K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2017

ta thấy\(\sqrt{\left(2x+1\right)^2+4}\ge0\forall x\)

3/4y\(^2\)-1\(\ge0\forall x\)

suy ra \(\sqrt{\left(2x+1\right)^2+4}+3\)/4y\(^2\)-1/\(\ge0\forall x,y\)

=>min a=5

dau =xảy ra <=>x=\(\dfrac{3}{2}\),y=\(\dfrac{1}{2}\)

17 tháng 3 2017

sai \(\sqrt{\left(2x+1\right)^2+4}\) nó có vai trò riêng của nó chứ có fai >=0 đâu

a) Ta có: \(\left(2x-1\right)^2\ge0\forall x\)

\(\Rightarrow-3\left(2x-1\right)^2\le0\forall x\)

\(\Rightarrow-3\left(2x-1\right)^2+5\le5\forall x\)

Dấu '=' xảy ra khi 2x-1=0

\(\Leftrightarrow2x=1\)

hay \(x=\dfrac{1}{2}\)

Vậy: Giá trị lớn nhất của biểu thức \(A=5-3\left(2x-1\right)^2\) là 5 khi \(x=\dfrac{1}{2}\)

24 tháng 11 2016

Ta có: (2x+1)^2 lớn hơn hoặc bằng 0 suy ra (2x+1)^2+4 lớn hơn hoặc bằng 0 suy ra căn (2x+1)+4 lớn hơn hoặc bằng 0

Lại có:|4y^2-1|lớn hơn hoặc bằng 0 suy ra 3.|4y^2-1| lớn hơn hoặc bằng 0 

nên GTNN của A =5 khi và chỉ khi (2x+1)^2+4=0 và 4y^2-1=0

Với (2x-1)^2-4=0 suy ra (2x+1)^2=-4 suy ra 2x+2= -2 hoặc 2. Nếu 2x+1=-2 suy ra x=-3/2; nếu 2x+1=2 thì x=1/2

Với 4y^2-1=0 suy ra 4y^2=1 suy ra y^2=1/4 suy ra y=1/2 và y=-1/2

24 tháng 11 2016

giá trị nhỏ nhất là 10 đạt đc khi x = 0,5 và y = 0

g

28 tháng 8 2021

1) \(A=x^2+4\ge4\)

\(ĐTXR\Leftrightarrow x=0\)

2) \(B=2x^2-\dfrac{3}{2}\ge-\dfrac{3}{2}\)

\(ĐTXR\Leftrightarrow x=0\)

3) \(\left(2x-3\right)^2-5\ge-5\)

\(ĐTXR\Leftrightarrow x=\dfrac{3}{2}\)

26 tháng 12 2022

đợi tý

18 tháng 8 2023

Đã trả lời rồi còn độ tí đồ ngull