Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
ΔABC nội tiếp đường tròn
AB là đường kính
Do đó: ΔABC vuông tại C
\(\left(\dfrac{1}{a^2+a}-\dfrac{1}{a+1}\right):\dfrac{1-a}{a^2+2a+1}=\left(\dfrac{1}{a\left(a+1\right)}-\dfrac{1}{a+1}\right);\dfrac{1-a}{\left(a+1\right)^2}=\left(\dfrac{1}{a\left(a+1\right)}-\dfrac{a}{a\left(a+1\right)}\right):\dfrac{1-a}{\left(a+1\right)^2}=\left(\dfrac{1-a}{a\left(a+1\right)}\right).\dfrac{\left(a+1\right)^2}{1-a}=\dfrac{a+1}{a}\)
1.
b, \(B=\dfrac{8+2\sqrt{2}}{3-\sqrt{2}}-\dfrac{2+3\sqrt{2}}{\sqrt{2}}+\dfrac{\sqrt{2}}{1-\sqrt{2}}\)
\(=\dfrac{2\left(2+\sqrt{2}\right)\left(3-\sqrt{2}\right)}{3-\sqrt{2}}-\dfrac{\sqrt{2}\left(\sqrt{2}+3\right)}{\sqrt{2}}+\dfrac{\sqrt{2}\left(1+\sqrt{2}\right)}{1-\sqrt{2}}\)
\(=4+2\sqrt{2}-\sqrt{2}-3-2-\sqrt{2}\)
\(=-1\)
Bài 1:
b: Ta có: \(B=\dfrac{8+2\sqrt{2}}{3-\sqrt{2}}-\dfrac{2+3\sqrt{2}}{\sqrt{2}}-\dfrac{\sqrt{2}}{\sqrt{2}-1}\)
\(=2\sqrt{2}\left(\sqrt{2}+1\right)-\sqrt{2}-3-2+\sqrt{2}\)
\(=4+2\sqrt{2}-5\)
\(=2\sqrt{2}-1\)
1B:
a: Ta có: \(N=\sqrt{8}+\sqrt{32}+\sqrt{108}-\sqrt{27}\)
\(=2\sqrt{2}+4\sqrt{2}+6\sqrt{3}-3\sqrt{3}\)
\(=6\sqrt{2}+3\sqrt{3}\)
b: Ta có: \(M=\dfrac{2}{2+\sqrt{3}}-\dfrac{1}{2-\sqrt{3}}\)
\(=4-2\sqrt{3}-2-\sqrt{3}\)
\(=2-3\sqrt{3}\)
1b) \(C=\sqrt{81a}-\sqrt{144a}+\sqrt{36a}\left(a\ge0\right)=8\sqrt{a}-12\sqrt{a}+6\sqrt{a}=2\sqrt{a}\)
Bài 2:
a),b) \(P=\left(\dfrac{1}{1-\sqrt{a}}-\dfrac{1}{1+\sqrt{a}}\right)\left(\dfrac{1}{\sqrt{a}}+1\right)\left(đk:x>0,x\ne1\right)\)
\(=\dfrac{1+\sqrt{a}-1+\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}.\dfrac{\sqrt{a}+1}{\sqrt{a}}=\dfrac{2\sqrt{a}}{1-\sqrt{a}}.\dfrac{1}{\sqrt{a}}=\dfrac{2}{1-\sqrt{a}}\)
c) \(P=\dfrac{2}{1-\sqrt{a}}=\dfrac{2}{1-\sqrt{4}}=\dfrac{2}{1-2}=-2\)
d) \(P=\dfrac{2}{1-\sqrt{a}}=9\)
\(\Rightarrow-9\sqrt{a}+9=2\Rightarrow\sqrt{a}=\dfrac{7}{9}\Rightarrow a=\dfrac{49}{81}\left(tm\right)\)
b)\(\left\{{}\begin{matrix}x+y=-1+m\left(1\right)\\2x-y=2m\end{matrix}\right.\)
\(\Rightarrow3x=-1+3m\)
\(\Leftrightarrow x=\dfrac{-1+3m}{3}\)
Thay \(x=\dfrac{-1+3m}{3}\) vào (1) có:
\(\dfrac{-1+3m}{3}+y=-1+m\)\(\Leftrightarrow y=-1+m-\dfrac{-1+3m}{3}=-\dfrac{2}{3}\)
Suy ra với mọi m hệ luôn có nghiệm duy nhất \(\left(x;y\right)=\left(\dfrac{-1+3m}{3};-\dfrac{2}{3}\right)\)
\(xy=\left(\dfrac{-1+3m}{3}\right).\left(-\dfrac{2}{3}\right)=10\)
\(\Leftrightarrow m=-\dfrac{44}{3}\)
Vậy...
\(\left\{{}\begin{matrix}x+y=m-1\\2x-y=2m\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}2x+2y=2m-2\\2x-y=2m\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}3y=-2\\x=m-1-y\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}y=\dfrac{-2}{3}\\x=m-\dfrac{1}{3}\end{matrix}\right.\)
Ta có :
\(x.y=10\text{⇔}\left(m-\dfrac{1}{3}\right).\dfrac{-2}{3}=10\)
\(\text{⇔}m=\dfrac{-44}{3}\)