Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1B:
a: Ta có: \(N=\sqrt{8}+\sqrt{32}+\sqrt{108}-\sqrt{27}\)
\(=2\sqrt{2}+4\sqrt{2}+6\sqrt{3}-3\sqrt{3}\)
\(=6\sqrt{2}+3\sqrt{3}\)
b: Ta có: \(M=\dfrac{2}{2+\sqrt{3}}-\dfrac{1}{2-\sqrt{3}}\)
\(=4-2\sqrt{3}-2-\sqrt{3}\)
\(=2-3\sqrt{3}\)
b)\(\left\{{}\begin{matrix}x+y=-1+m\left(1\right)\\2x-y=2m\end{matrix}\right.\)
\(\Rightarrow3x=-1+3m\)
\(\Leftrightarrow x=\dfrac{-1+3m}{3}\)
Thay \(x=\dfrac{-1+3m}{3}\) vào (1) có:
\(\dfrac{-1+3m}{3}+y=-1+m\)\(\Leftrightarrow y=-1+m-\dfrac{-1+3m}{3}=-\dfrac{2}{3}\)
Suy ra với mọi m hệ luôn có nghiệm duy nhất \(\left(x;y\right)=\left(\dfrac{-1+3m}{3};-\dfrac{2}{3}\right)\)
\(xy=\left(\dfrac{-1+3m}{3}\right).\left(-\dfrac{2}{3}\right)=10\)
\(\Leftrightarrow m=-\dfrac{44}{3}\)
Vậy...
\(\left\{{}\begin{matrix}x+y=m-1\\2x-y=2m\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}2x+2y=2m-2\\2x-y=2m\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}3y=-2\\x=m-1-y\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}y=\dfrac{-2}{3}\\x=m-\dfrac{1}{3}\end{matrix}\right.\)
Ta có :
\(x.y=10\text{⇔}\left(m-\dfrac{1}{3}\right).\dfrac{-2}{3}=10\)
\(\text{⇔}m=\dfrac{-44}{3}\)
\(\left(\dfrac{1}{a^2+a}-\dfrac{1}{a+1}\right):\dfrac{1-a}{a^2+2a+1}=\left(\dfrac{1}{a\left(a+1\right)}-\dfrac{1}{a+1}\right);\dfrac{1-a}{\left(a+1\right)^2}=\left(\dfrac{1}{a\left(a+1\right)}-\dfrac{a}{a\left(a+1\right)}\right):\dfrac{1-a}{\left(a+1\right)^2}=\left(\dfrac{1-a}{a\left(a+1\right)}\right).\dfrac{\left(a+1\right)^2}{1-a}=\dfrac{a+1}{a}\)
a: Ta có: \(\sqrt{x^2-4x+4}=\sqrt{4x^2-12x+9}\)
\(\Leftrightarrow\left|x-2\right|=\left|2x-3\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=x-2\\2x-3=2-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{5}{3}\end{matrix}\right.\)
c: Ta có: \(\sqrt{4x^2-4x+1}=\sqrt{x^2-6x+9}\)
\(\Leftrightarrow\left|2x-1\right|=\left|x-3\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=x-3\\2x-1=3-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{4}{3}\end{matrix}\right.\)
1.
b, \(B=\dfrac{8+2\sqrt{2}}{3-\sqrt{2}}-\dfrac{2+3\sqrt{2}}{\sqrt{2}}+\dfrac{\sqrt{2}}{1-\sqrt{2}}\)
\(=\dfrac{2\left(2+\sqrt{2}\right)\left(3-\sqrt{2}\right)}{3-\sqrt{2}}-\dfrac{\sqrt{2}\left(\sqrt{2}+3\right)}{\sqrt{2}}+\dfrac{\sqrt{2}\left(1+\sqrt{2}\right)}{1-\sqrt{2}}\)
\(=4+2\sqrt{2}-\sqrt{2}-3-2-\sqrt{2}\)
\(=-1\)
Bài 1:
b: Ta có: \(B=\dfrac{8+2\sqrt{2}}{3-\sqrt{2}}-\dfrac{2+3\sqrt{2}}{\sqrt{2}}-\dfrac{\sqrt{2}}{\sqrt{2}-1}\)
\(=2\sqrt{2}\left(\sqrt{2}+1\right)-\sqrt{2}-3-2+\sqrt{2}\)
\(=4+2\sqrt{2}-5\)
\(=2\sqrt{2}-1\)