K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 31:

a: vecto ME=vecto MA+vecto AE

=-1/2vecto AB+2/3vecto AC

5 vecto IA+3*vetco IB+4*vecto IC=vecto 0

=>5*vecto IE+5 vecto EA+3 vecto IE+3 vecto EB+4 vecto IE+4 vecto EC=vecto 0

=>12 vecto IE=-5vecto EA-3 vecto EB-4 vecto EC

=>12 vecto IE=10 vecto EC-4 vecto EC-3(vecto EC+vecto CB)

=>12 vecto IE=6 vecto EC-3vecto EC-3 vecto CB

=>12 vecto IE=3 vecto EC-3(vecto CA+vecto AB)

=>12 vecto IE=vecto AC+3 vecto AC-3 vecto AB

=>12 vecto IE=4 vecto AC-3vecto AB

=>vecto IE=-1/4 vecto AB+1/3vecto AC

mà vecto ME=-1/2 vecto AB+2/3vecto AC

nên I là trung điểm của ME

b: vecto AI=vecto AM+vecto MI

=1/2vecto AB+1/2vecto ME

=1/2vecto AB+1/2(-1/2vecto AB+2/3vecto AC)

=1/4vecto AB+1/3vecto AC

vecto AN=vecto AB+vecto BN

=vecto AB+4/7 vecto BC

=vecto AB-4/7vecto AB+4/7vecto AC

=3/7vecto AB+4/7vecto AC

=>A,I,N thẳng hàng

5 tháng 3 2022

undefined

không biết xét dấu của phần c đúng chưa,tại m mới học 

với cả m làm hơi ẩu ,có gì thông cảm

phần d thì làm tương tự phần c nhé!!!

NV
5 tháng 5 2021

Đề bài yêu cầu cụ thể điều gì vậy bạn?

7 tháng 3 2022

\(5;;\sqrt{\left(x+5\right)\left(3x+4\right)}>4\left(x-1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}4\left(x-1\right)\le0\\\left(x+5\right)\left(3x+4\right)\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}4\left(x-1\right)\ge0\\\left(x+5\right)\left(3x+4\right)\ge0\\\left(x+5\right)\left(3x+4\right)>16\left(x-1\right)^2\end{matrix}\right.\end{matrix}\right.\)

\(TH:\left\{{}\begin{matrix}4\left(x-1\right)\le0\\\left(x+5\right)\left(3x+4\right)\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le1\\\left[{}\begin{matrix}x\le-5\\x\ge-\dfrac{4}{3}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow x\in(-\infty;-5]\cup\left[-\dfrac{4}{3};1\right]\left(1\right)\)

\(TH:\left\{{}\begin{matrix}4\left(x-1\right)\ge0\\\left(x+5\right)\left(3x+4\right)\ge0\\\left(x+5\right)\left(3x+4\right)>16\left(x-1\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\\left[{}\begin{matrix}x\le-5\\x\ge-\dfrac{4}{3}\end{matrix}\right.\\-\dfrac{1}{13}< x< 4\\\end{matrix}\right.\)\(\Rightarrow x\in[1;4)\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow x\in(-\infty;5]\cup[\dfrac{-4}{3};4)\)

 

7 tháng 3 2022

\(6;;;;\sqrt{7x+7}+\sqrt{7x-6}+2\sqrt{49x^2+7x-42}< 181-14x\)

(đoạn 49x^2+7x+42 chắc bạn viết sai đề dấu"-" thành "+")

\(đk:\left\{{}\begin{matrix}7x+7\ge0\\7x-6\ge0\end{matrix}\right.\) \(\Leftrightarrow x\ge\dfrac{6}{7}\)

\(bpt\Leftrightarrow\sqrt{7x+7}+\sqrt{7x-6}+2\sqrt{\left(7x+7\right)\left(7x-6\right)}+14x+1< 182\left(1\right)\)

\(đặt:\sqrt{7x+7}+\sqrt{7x-6}=t>0\)

\(\Rightarrow t^2=14x+1+2\sqrt{\left(7x+7\right)\left(7x-6\right)}\)

\(\Rightarrow\left(1\right)\Leftrightarrow t^2+t< 182\Leftrightarrow-14< t< 13\)

\(\Rightarrow\sqrt{7x+7}+\sqrt{7x-6}< 13\Leftrightarrow14x+1+2\sqrt{\left(7x+7\right)\left(7x-6\right)}< 169\)

\(\Leftrightarrow2\sqrt{\left(7x+7\right)\left(7x-6\right)}< 168-14x\)

\(\Leftrightarrow\left\{{}\begin{matrix}168-14x\ge0\\\left(7x+7\right)\left(7x-6\right)\ge0\\4\left(7x+7\right)\left(7x-6\right)< \left(168-14x\right)^2\\\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le12\\\left[{}\begin{matrix}x\le-1\\x\ge\dfrac{6}{7}\end{matrix}\right.\\x< 6\\\end{matrix}\right.\)\(\Rightarrow\dfrac{6}{7}\le x< 6\)

 

 

c: \(\Leftrightarrow x^2-5x-x^2-7< =0\)

=>-5x<=7

hay x>=-7/5

d: \(\Leftrightarrow x^2-x-2+3-x^2>=0\)

=>-x+1>=0

=>-x>=-1

hay x<=1

6 tháng 3 2022

\(\left(m-2\right)x^4-2\left(m+1\right)x^2+2m-1=0\left(1\right)\)

\(m=2\left(ktm\right)\)

\(m\ne2:đặt:x^2=t\ge0\Rightarrow\left(1\right)\Leftrightarrow\left(m-2\right)t^2-2\left(m+1\right)t+2m-1=0\)

\(3nghiem\Leftrightarrow\left\{{}\begin{matrix}2m-1=0\\t1+t2=\dfrac{2m+2}{m-2}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{1}{2}\\\left[{}\begin{matrix}m>2\\m< -1\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow m\in\phi\)

\(4nghiem\Leftrightarrow\left\{{}\begin{matrix}\Delta'>0\\t1+t2>0\Leftrightarrow\\t1.t2>0\end{matrix}\right.\left\{{}\begin{matrix}\left(m+1\right)^2-\left(m-2\right)\left(2m-1\right)>0\\\dfrac{2m+2}{m-2}>0\\\dfrac{2m-1}{m-2}>0\end{matrix}\right.\)

giải hệ bất pt trên=>m

\(c3:b;\left\{{}\begin{matrix}-8\le x\le-2\\m\left(x-3\right)\ge1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}-8\le x\le-2\\m\le\dfrac{1}{x-3}\end{matrix}\right.\)

\(có\) \(nghiệm\Leftrightarrow m\le max:\dfrac{1}{x-3}trên\left[-8;-2\right]\)

\(\Leftrightarrow m\le\dfrac{-1}{5}\)

NV
6 tháng 11 2021

ĐKXĐ: \(-1\le x\le3\)

Đặt \(\sqrt{x+1}+\sqrt{3-x}=t\ge\sqrt{x+1+3-x}=2\)

\(\Rightarrow4+2\sqrt{-x^2+2x+3}=t^2\)

\(\Rightarrow\sqrt{-x^2+2x+3}=\dfrac{t^2-4}{2}\) (1)

Phương trình trở thành:

\(t-\dfrac{t^2-4}{2}=2\)

\(\Leftrightarrow2t-t^2=0\Rightarrow\left[{}\begin{matrix}t=0\left(loại\right)\\t=2\end{matrix}\right.\)

Thế vào (1):

\(\Rightarrow\sqrt{-x^2+2x+3}=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)

6 tháng 5 2021

2.

\(x^2+2x+m+1\le0\)

\(\Leftrightarrow m\le f\left(x\right)=-\left(x+1\right)^2\)

Yêu cầu bài toán thỏa mãn khi:

\(\Leftrightarrow m\le maxf\left(x\right)=max\left\{f\left(-1\right);f\left(3\right)\right\}=0\)

Vậy \(m\le0\)

6 tháng 5 2021

3.

\(f\left(x\right)=x^2-2mx-3m\le0\)

Yêu cầu bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}\Delta'\ge0\\f\left(-1\right)\le0\\f\left(3\right)\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2+3m\ge0\\1-m\le0\\-9m-9\le0\end{matrix}\right.\Leftrightarrow m\ge1\)

Vậy \(m\ge1\)

NV
30 tháng 4 2021

a. Gọi \(x_1>x_2\) là 2 nghiệm của \(x^2+6x+m+7=0\) thì BPT đã cho có tập nghiệm là đoạn có chiều dài bằng 1 khi và chỉ khi \(x_1-x_2=1\)

\(\Leftrightarrow\left(x_1-x_2\right)^2=1\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=1\)

\(\Leftrightarrow36-4\left(m+7\right)=1\)

\(\Leftrightarrow m=\dfrac{7}{4}\)

b. \(x^2+6x+m+7\le0\) ;\(\forall x\in\left[-4;-1\right]\)

\(\Leftrightarrow x^2+6x+7\le-m\) ; \(\forall x\in\left[-4;-1\right]\)

\(\Leftrightarrow-m\ge\max\limits_{\left[-4;-1\right]}\left(x^2+6x+7\right)\)

Xét hàm \(f\left(x\right)=x^2+6x+7\) trên \(\left[-4;-1\right]\)

\(-\dfrac{b}{2a}=-3\in\left[-4;-1\right]\) ; \(f\left(-4\right)=-1\) ; \(f\left(-3\right)=-2\) ; \(f\left(-1\right)=2\)

\(\Rightarrow\max\limits_{\left[-4;-1\right]}\left(x^2+6x+7\right)=2\Rightarrow-m\ge2\)

\(\Rightarrow m\le-2\)

12 tháng 4 2021

1.

a, \(\left(C\right)x^2+y^2-6x-2y+6=0\)

\(\Leftrightarrow\left(C\right)\left(x-3\right)^2+\left(y-1\right)^2=4\)

\(\Rightarrow\) Tâm \(I=\left(3;1\right)\), bán kính \(R=2\)

b, Tiếp tuyến đi qua A có dạng: \(\left(\Delta\right)ax+by-5a-7b=0\left(a^2+b^2\ne0\right)\)

Ta có: \(d\left(I;\Delta\right)=\dfrac{\left|3a+b-5a-7b\right|}{\sqrt{a^2+b^2}}=2\)

\(\Leftrightarrow\left|a+3b\right|=\sqrt{a^2+b^2}\)

\(\Leftrightarrow6ab+8b^2=0\)

\(\Leftrightarrow2b\left(3a+4b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}b=0\\3a+4b=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\Delta_1:x=5\\\Delta_2:4x-3y+1=0\end{matrix}\right.\)

TH1: \(\Delta_1:x=5\)

Tiếp điểm có tọa độ là nghiệm hệ: \(\left\{{}\begin{matrix}x=5\\x^2+y^2-6x-2y+6=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=5\\y^2-2y+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=1\end{matrix}\right.\Rightarrow\left(5;1\right)\)

TH2: \(\Delta_2:4x-3y+1=0\)

Tiếp điểm có tọa độ là nghiệm hệ: \(\left\{{}\begin{matrix}4x-3y+1=0\\x^2+y^2-6x-2y+6=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7}{5}\\y=\dfrac{11}{5}\end{matrix}\right.\Rightarrow\left(\dfrac{7}{5};\dfrac{11}{5}\right)\)

Kết luận: Phương trình tiếp tuyến: \(\left\{{}\begin{matrix}\Delta_1:x=5\\\Delta_2:4x-3y+1=0\end{matrix}\right.\)

Tọa độ tiếp điểm: \(\left\{{}\begin{matrix}\left(5;1\right)\\\left(\dfrac{7}{5};\dfrac{11}{5}\right)\end{matrix}\right.\)