K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2020

BẰng 2 chứ ko phải 22

21 tháng 2 2020

\(ĐKXĐ:\hept{\begin{cases}x\ne2;x\ne-4\\x\ne1;x\ne-3\end{cases}}\)

\(\frac{24}{x^2+2x-8}-\frac{15}{x^2+2x-3}=2\)

\(\Leftrightarrow\frac{24}{\left(x-2\right)\left(x+4\right)}-\frac{15}{\left(x-1\right)\left(x+3\right)}-2=0\)

\(\Leftrightarrow24\left(x^2+2x-3\right)-15\left(x^2+2x-8\right)-2\left(x^2+2x-8\right)\left(x^2+2x-3\right)=0\)

\(\Leftrightarrow24x^2+48x-72-15x^2-30x+120-2\left(x^4+4x^3-7x^2-22x+24\right)=0\)

\(\Leftrightarrow9x^2+18x+48-2x^4-8x^3+14x^2+44x-48=0\)

\(\Leftrightarrow-2x^4-8x^3+23x^2+62x=0\)

\(\Leftrightarrow-x\left(2x^3+8x^2-23x-62\right)=0\)

\(\Leftrightarrow-x\left(2x^3+4x^2+4x^2+8x-31x-62\right)=0\)

\(\Leftrightarrow x\left[2x^2\left(x+2\right)+4x\left(x+2\right)-31\left(x+2\right)\right]=0\)

\(\Leftrightarrow x\left(x+2\right)\left(2x^2+4x-31\right)=0\)

\(\Leftrightarrow\)\(x=0\)

hoặc \(x=-2\)

hoặc \(2\left(x+1\right)^2-33=0\)

\(\Leftrightarrow\)\(x=0\)(tm)

hoặc \(x=-2\)(tm)

hoặc \(x=-\frac{2\pm\sqrt{66}}{2}\)(tm)

Vậy tập nghiệm của phương trình là \(S=\left\{0;-2;-\frac{2\pm\sqrt{66}}{2}\right\}\)

\(\frac{\left(x+2\right)^2}{8}-2\left(2x+1\right)=25+\frac{\left(x-2\right)^2}{8}\)

\(\Leftrightarrow\frac{\left(x+2\right)^2}{8}-\frac{16\left(2x+1\right)}{8}=\frac{200}{8}+\frac{\left(x-2\right)^2}{8}\)

\(\Leftrightarrow\left(x+2\right)^2-32x-16=200+\left(x-2\right)^2\)

\(\Leftrightarrow x^2+4x+4-32x-16-200=x^2-4x+4\)

\(\Leftrightarrow x^2-28x-212-x^2+4x-4=0\)

\(\Leftrightarrow-24x=216\)

\(\Leftrightarrow x=-9\)

1 tháng 7 2019

TL:

a)

\(\frac{\left(x+2\right)^2}{8}-\frac{16\left(2x+1\right)}{8}=\frac{200+\left(x-2\right)^2}{8}\) 

\(\frac{x^2+4x+4-32x-16}{8}=\frac{200+x^2-4x+4}{8}\) 

\(x^2-28x-12-200-x^2+4x-4=0\) 

\(-24x-216=0\) 

\(-24x=216\) 

\(x=-9\) 

Vậy x=-9

3 tháng 8 2020

\(5X\left(X-2020\right)+X=2020\)

\(\Leftrightarrow5X^2-10100X+X=2020\)

\(\Leftrightarrow5X^2-10099X=2020\)

\(\Leftrightarrow5X^2-10099X-2020=0\)

\(\Leftrightarrow5X^2-10100X+x-2020=0\)

\(\Leftrightarrow5X\left(X-2020\right)+X-2020=0\)

\(\Leftrightarrow\left(X-2020\right)\left(5X+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2020\\x=-\frac{1}{5}\end{cases}}\)

3 tháng 8 2020

\(4\left(x-5\right)^2-\left(2x+1\right)^2=0\)

\(\Leftrightarrow\left[2\left(x-5\right)\right]^2-\left(2x+1\right)^2=0\)

\(\Leftrightarrow\left[2\left(x-5\right)-2x-1\right]\left[2\left(x-5\right)+2x+1\right]=0\)

\(\Leftrightarrow\left(2x-10-2x-1\right)\left(2x-10+2x+1\right)=0\)

\(\Leftrightarrow-11\left(4x-9\right)=0\)

\(\Leftrightarrow x=\frac{9}{4}\)

c: \(=\dfrac{1}{3x-2}-\dfrac{4}{3x+2}+\dfrac{3x-6}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\dfrac{3x+2-12x+8+3x-6}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\dfrac{-6x+4}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{-2}{3x+2}\)

d: \(=\dfrac{x^2-4-x^2+10}{x+2}=\dfrac{6}{x+2}\)

e: \(=\dfrac{1}{2\left(x-y\right)}-\dfrac{1}{2\left(x+y\right)}-\dfrac{y}{\left(x-y\right)\left(x+y\right)}\)

\(=\dfrac{x+y-x+y-2y}{2\left(x-y\right)\left(x+y\right)}=\dfrac{0}{2\left(x-y\right)\left(x+y\right)}=0\)

18 tháng 3 2020

\(\Leftrightarrow\frac{6x^2+3}{24}-\frac{10x-4}{24}=\frac{6x^2-6}{24}-\frac{4x-12}{24}\)

\(\Leftrightarrow\frac{6x^2+3-10x+4}{24}=\frac{6x^2-6-4x+12}{24}\)

\(\Leftrightarrow6x^2-10x+7=6x^2-4x+6\)

\(\Leftrightarrow-6x+1=0\)

\(\Rightarrow-6x=-1\)

\(\Leftrightarrow x=\frac{1}{6}\)

Vậy ...

30 tháng 7 2019

1) \(\frac{x}{x^2-1}+\frac{3}{x^2-2x-3}=\frac{x}{x^2-4x+3}\)

\(\Leftrightarrow\frac{x}{\left(x+1\right)\left(x-1\right)}+\frac{3}{\left(x-3\right)\left(x+1\right)}=\frac{x}{\left(x-3\right)\left(x-1\right)}\)

\(\Leftrightarrow x\left(x-3\right)+3\left(x-1\right)=x\left(x+1\right)\)

\(\Leftrightarrow x^2-3=x^2+x\)

\(\Leftrightarrow-3=x\)

\(\Leftrightarrow x=-3\)

Vậy: nghiệm phương trình là -3

30 tháng 7 2019

\(3,\text{ }\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16=0\)

\(\Rightarrow\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)=0-16\)

\(\Rightarrow\text{ Có lẻ thừa số âm }\)

Mà \(\left(x+8\right)>\left(x+6\right)>\left(x+4\right)>\left(x+2\right)\)

Ta có hai trường hợp : 

\(TH\text{ }1\text{ :}\) Có một thừa số âm

\(\Rightarrow\text{ }\left(x+2\right)< 0\)

\(\Rightarrow\text{ }x< -2\)

\(TH\text{ }2\text{ : }\) Có 3 thừa số âm

\(\Rightarrow\text{ }\hept{\begin{cases}\left(x+2\right)< 0\\\left(x+4\right)< 0\\\left(x+6\right)< 0\end{cases}}\)                \(\Rightarrow\text{ }\left(x+2\right)< 0\text{ }\Rightarrow\text{ }x< -2\)

Si thì thôi nha ! Mong bạn thông cảm !

c: \(=\dfrac{1}{3x-2}-\dfrac{4}{3x+2}+\dfrac{3x-6}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\dfrac{3x+2-12x+8+3x-6}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\dfrac{-6x+4}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{-2}{3x+2}\)

d: \(=\dfrac{x^2-4-x^2+10}{x+2}=\dfrac{6}{x+2}\)

e: \(=\dfrac{1}{2\left(x-y\right)}-\dfrac{1}{2\left(x+y\right)}-\dfrac{y}{\left(x-y\right)\left(x+y\right)}\)

\(=\dfrac{x+y-x+y-2y}{2\left(x-y\right)\left(x+y\right)}=0\)