K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2017

\(\dfrac{x}{2008}-\dfrac{1}{10}-\dfrac{1}{15}-\dfrac{1}{21}-...-\dfrac{1}{120}=\dfrac{5}{8}\)

\(\dfrac{x}{2008}-\dfrac{2}{20}-\dfrac{2}{30}-\dfrac{2}{42}-...-\dfrac{2}{240}=\dfrac{5}{8}\)

\(\dfrac{x}{2008}-\left(\dfrac{2}{20}+\dfrac{2}{30}+\dfrac{2}{42}+...+\dfrac{2}{240}\right)=\dfrac{5}{8}\)

\(\dfrac{x}{2008}-2\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{15.16}\right)=\dfrac{5}{8}\)

\(\dfrac{x}{2008}-2\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{15}-\dfrac{1}{16}\right)=\dfrac{5}{8}\)

\(\dfrac{x}{2008}-2\left(\dfrac{1}{4}-\dfrac{1}{16}\right)=\dfrac{5}{8}\)

\(\dfrac{x}{2008}-2.\dfrac{3}{16}=\dfrac{5}{8}\)

\(\dfrac{x}{2008}-\dfrac{3}{8}=\dfrac{5}{8}\)

\(\dfrac{x}{2008}=\dfrac{5}{8}+\dfrac{3}{8}\)

\(\dfrac{x}{2008}=1=\dfrac{2008}{2008}\)

\(\Rightarrow x=2008\)

17 tháng 3 2017

b,\(\dfrac{1}{3.5}+\dfrac{1}{5.7}\)\(+\dfrac{1}{7.9}+....+\dfrac{1}{\left(2x+1\right).\left(2x+3\right)}=\dfrac{15}{93}\)

\(\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{2x+1}-\dfrac{1}{2x+3}\right).\dfrac{1}{2}=\dfrac{15}{93}\)

\(\left[\dfrac{1}{3}+\left(\dfrac{1}{5}-\dfrac{1}{5}\right)+\left(\dfrac{1}{7}-\dfrac{1}{7}\right)+....+\left(\dfrac{1}{2x+1}-\dfrac{1}{2x+1}\right)-\dfrac{1}{2x+3}\right].\dfrac{1}{2}=\dfrac{15}{93}\)

\(\left(\dfrac{1}{3}+0+0+...+0-\dfrac{1}{2x+3}\right).\dfrac{1}{2}=\dfrac{15}{93}\)

\(\dfrac{1}{3}-\dfrac{1}{2x+3}=\dfrac{15}{93}:\dfrac{1}{2}\)

\(\dfrac{1}{3}-\dfrac{1}{2x+3}=\dfrac{10}{31}\)

\(\dfrac{1}{2x+3}=\dfrac{1}{3}-\dfrac{10}{31}\)

\(\dfrac{1}{2x+3}=\dfrac{1}{93}\)

\(\Rightarrow2x+3=93\)

\(2x=93-3=90\)

\(\Rightarrow x=90:2=45\)

19 tháng 3 2017

Cảm ơn bạn

27 tháng 7 2021

\(M=\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+...+\dfrac{1}{105}+\dfrac{1}{120}\)

\(M=2.\left(\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+...+\dfrac{1}{240}\right)\)

\(M=2.\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{15.16}\right)\)

\(M=2.\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{15}-\dfrac{1}{16}\right)\)

\(M=2.\left(\dfrac{1}{4}-\dfrac{1}{16}\right)\)

\(M=2.\dfrac{3}{16}\)

\(M=\dfrac{3}{8}\)

Vậy \(\dfrac{1}{3}< M< \dfrac{1}{2}\)

2 tháng 7 2017

\(A=\dfrac{2}{20}+\dfrac{2}{30}+\dfrac{2}{42}+...+\dfrac{2}{240}=2\times\left(\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{240}\right)\)

\(A=2\times\left(\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+\dfrac{1}{6\times7}+....+\dfrac{1}{15\times16}\right)\)

\(A=2\times\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{15}-\dfrac{1}{16}\right)\)

\(A=2\times\left(\dfrac{1}{4}-\dfrac{1}{16}\right)=\dfrac{3}{8}\)

2 tháng 7 2017

b) cậu đi tìm số sốm hạng là : \(\left(2010-1\right):1+1=2010\)

\(\Rightarrow\)số cặp trong phép tính là : \(2010:2=1005\)(cặp)

\(\Rightarrow B=1-2+3-4+...+2009-2010\)(1005 cặp)

\(\Rightarrow\left(1-2\right)+\left(3-4\right)+...+\left(2009-2010\right)\)

\(\Rightarrow B=\left(-1\right)+\left(-1\right)+...+\left(-1\right)\)(1005 số -1)

\(\Rightarrow B=\left(-1\right).1005\)

\(\Rightarrow B=\left(-1005\right)\)

cậu tik cho mik nhé!!!

a)\(\dfrac{-10}{11}.\dfrac{8}{9}+\dfrac{7}{18}.\dfrac{10}{11}\)

=\(\dfrac{10}{11}.\dfrac{-8}{9}+\dfrac{7}{18}.\dfrac{10}{11}\)

=\(\dfrac{10}{11}(\dfrac{-8}{9}+\dfrac{7}{18})\)

=\(\dfrac{10}{11}.\dfrac{-1}{2}\)

=\(\dfrac{-5}{11}\)

7 tháng 8

b; 

B = \(\dfrac{3}{14}\) : \(\dfrac{1}{28}\) - \(\dfrac{13}{21}\)\(\dfrac{1}{28}\) + \(\dfrac{29}{42}\) : \(\dfrac{1}{28}\) - 8

B = (\(\dfrac{3}{14}\) - \(\dfrac{13}{21}\) + \(\dfrac{29}{42}\)) - 8

B = (\(\dfrac{9}{42}\) - \(\dfrac{26}{42}\) + \(\dfrac{29}{42}\)) - 8

B = (\(\dfrac{-17}{42}\) + \(\dfrac{29}{42}\)) - 8

B = \(\dfrac{2}{7}\) - 8

B = \(\dfrac{2}{7}-\dfrac{56}{7}\)

B = - \(\dfrac{54}{7}\)

15 tháng 4 2017

\(\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+...+\dfrac{1}{120}\)

\(=\dfrac{2}{20}+\dfrac{2}{30}+\dfrac{2}{42}+...+\dfrac{2}{240}\)

\(=2\times\left(\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+...\dfrac{1}{240}\right)\)

\(=2\times\left(\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+\dfrac{1}{6\times7}+...+\dfrac{1}{15\times16}\right)\)

\(=2\times\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{15}-\dfrac{1}{16}\right)\)

\(=2\times\left(\dfrac{1}{4}-\dfrac{1}{16}\right)\)

\(=\dfrac{3}{8}\)

15 tháng 4 2017

=2/20+2/30+2/42+.....+2/240

=2/4.5+2/5.6+2/6.7+.....+2/15.16

=1/2[1/4.5+1/5.6+1/6.7+.....+1/15.16]

=1.2[1/4-1/5+1/5-1/6+.....+1/15-1/16]

=1/2[1/4-1/16]

=1/2.3/16

=3/32

2 tháng 5 2023

a) Ta có \(A=\dfrac{n-5}{n-3}=\dfrac{n-3-2}{n-3}=1-\dfrac{2}{n-3}\). Để \(A\inℤ\) thì \(\dfrac{2}{n-3}\inℤ\) hay \(n-3\) là ước của 2. Suy ra \(n-3\in\left\{\pm1;\pm2\right\}\)

Nếu \(n-3=1\Rightarrow n=4\)\(n-3=-1\Rightarrow n=2\)\(n-3=2\Rightarrow n=5\)\(n-3=-2\Rightarrow n=1\). Vậy để \(A\inℤ\) thì \(n\in\left\{1;2;4;5\right\}\)

 \(A=\dfrac{n+4}{n+1}\) làm tương tự.

b) Dễ thấy các số ở mẫu có thể viết dưới dạng:

\(10=1+2+3+4=\dfrac{4\left(4+1\right)}{2}=\dfrac{4.5}{2}\)

\(15=1+2+3+4+5=\dfrac{5\left(5+1\right)}{2}=\dfrac{5.6}{2}\)

\(21=1+2+...+6=\dfrac{6\left(6+1\right)}{2}=\dfrac{6.7}{2}\)

...

\(120=1+2+...+15=\dfrac{15\left(15+1\right)}{2}=\dfrac{15.16}{2}\)

Do đó \(A=\dfrac{2}{4.5}+\dfrac{2}{5.6}+\dfrac{2}{6.7}+...+\dfrac{2}{15.16}\) 

\(A=2\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{15.16}\right)\)

\(A=2\left(\dfrac{5-4}{4.5}+\dfrac{6-5}{5.6}+\dfrac{7-6}{6.7}+...+\dfrac{16-15}{15.16}\right)\)

\(A=2\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{15}-\dfrac{1}{16}\right)\)

\(A=2\left(\dfrac{1}{4}-\dfrac{1}{16}\right)\)

\(A=\dfrac{3}{8}\)

 

21 tháng 3 2017

a)\(\frac{5}{2}-3\left(\frac{1}{3}-x\right)=\frac{1}{4}-7x\)

\(\Leftrightarrow\frac{5}{2}-1+x=\frac{1}{4}-7x\)

\(\Leftrightarrow8x=-\frac{5}{4}\)

\(\Leftrightarrow x=-\frac{5}{32}\)

c)\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2001}{2003}\)

\(\Leftrightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2001}{2003}\)

\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{4006}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2001}{4006}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2001}{4006}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2003}\)

\(\Leftrightarrow x+1=2003\)

\(\Leftrightarrow x=2002\)