Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1 mk hổng biết
câu 2 giải như sau
ta có : 12=3.4
A=3+32+33+34+....+32016=(3+32)+(33+34)+.....+(32015+32016)
=(3.1+3.3)+(33.1+33.3)+(32015.1+32015.3)
=3.(1+3)+33.(1+3)+....+32015.(1+3)
=3.4+33.4+....+32015.4
=4.(3+33+.....+32015)
Vì 4 chia hết cho 4=>4.(3+33+...+32015) (1)
Vì tất cả các số hạng trong A đều là lũy thừa của 3 =>A chia hết cho 3 (2)
Từ (1) và (2) => A chia hết cho 3.4 =>A chia hết cho 12 (đpcm)
Lời giải:
$a=1+2+3+...+n=\frac{n(n+1)}{2}$
Gọi $ƯCLN(a,b)=d$ thì:
$\frac{n(n+1)}{2}\vdots d$
$2n+1\vdots d$
$\Rightarrow n(n+1)\vdots d; 2n+1\vdots d$
Từ $n(n+1)\vdots d$, mà $(n,n+1)=1$ nên:
$n\vdots d$ hoặc $n+1\vdots d$
Nếu $n\vdots d\Rightarrow 2n\vdots d$
Kết hợp với $2n+1\vdots d\Rightarrow 1\vdots d$
$\Rightarrow d=1$
Nếu $n+1\vdots d\Rightarrow 2n+2\vdots d$
Kết hợp với $2n+1\vdots d$
$\Rightarrow (2n+2)-(2n+1)\vdots d$
Hay $1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(a,b)=1$
a) Ta có:
\(n^2+3n+2\)
\(=n^2+n+2n+2\)
\(=n\left(n+1\right)+2\left(n+1\right)\)
\(=\left(n+1\right)\left(n+2\right)\)
Vì \(n+1⋮n+1\)
\(\Rightarrow n+2⋮n+1\)
Ta có:
\(n+2=n+1+1\)
Vì \(n+1⋮n+1\)
\(\Rightarrow1⋮n+1\)
\(\Rightarrow n+1\inƯ\left(1\right)\)
\(\RightarrowƯ\left(1\right)\in\left\{-1;1\right\}\)
\(\Rightarrow\hept{\begin{cases}n+1=-1\\n+1=1\end{cases}\Rightarrow\hept{\begin{cases}n=-2\left(l\right)\\n=0\left(tm\right)\end{cases}}}\)
Vậy \(n=0\)
12+22+32+...+n2
=1.(2−1)+2.(3−1)+3.(4−1)+...+n[(n+1)−1]
=[1.2+2.3+3.4+...+n(n+1)]-(1+2+3+...+n)
=[n(n+1)(n+2)-0.1.2]/3-n(n+1)/2
=n(n+1)(2n+1)/6