K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2022
28 tháng 2 2022

\(\dfrac{1}{2}-\dfrac{1}{3}=\dfrac{1}{6}\) mà

15 tháng 3 2017

2a-a=1-1/2^99

a<1

15 tháng 3 2017

Bạn có cách giải rõ ràng ko Phúc

30 tháng 7 2015

A = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{100}}\)

2A = \(1+\frac{1}{2}+\frac{1}{2^2}+.....+\frac{1}{2^{99}}\)

A = 2A - A = \(1-\frac{1}{2^{100}}

25 tháng 4 2021

\(\dfrac{1}{40}+\dfrac{1}{88}+\dfrac{1}{154}+...+\dfrac{1}{y.(y+3)}=\dfrac{98}{1545}\)

\(3.(\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+...+\dfrac{1}{y(y+3)})=\dfrac{98}{1545}.3\)

\(\dfrac{3}{5.8}+\dfrac{3}{8.11}+\dfrac{3}{11.14}+...+\dfrac{3}{y(y+3)}=\dfrac{98}{515}\)

\(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+...+\dfrac{1}{y}-\dfrac{1}{y+3}=\dfrac{98}{515}\)

\(\dfrac{1}{y+3}=\dfrac{98}{515}\)

\(y+3.1=1.515\)

\(y+3=515\)

\(y=515-3\)

\(y=512\)

Vậy y = 512

Nhớ tick cho mk nha

25 tháng 4 2021

= 1/5.8+1/8.11+1/11.14+...+1/y(y+3)= 98/1545

=1/3.(1/5-1/8+1/8-1/11+1/11-1/14+...+1/y-1/y+3)=98/1545

=1/3.(1/5-1/y+3)=98/1545

=1/5-1/y+3=98/1545:1/3=98/515

=1/1+3=1/103

y+3=103

y=103-3

y=100

13 tháng 8 2018

ta có A = 1+(1+2)+....+(1+2+..+100) = 1 x 100 + 2 x 99 + ...+100 x 1

\(\Rightarrow\frac{A}{100.1+99.2+...+1.100}=\frac{100.1+99.2+..+1.100}{100.1+99.2+..+100.1}=1\)  

16 tháng 3 2022

bằng 99/100

 

16 tháng 3 2022

vt cách giải giúp mình đc ko

13 tháng 9 2020

\(A=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-...-\frac{100}{3^{100}}\)

\(\Rightarrow3A=1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)

\(\Rightarrow3A+A=1+\left(\frac{1}{3}-\frac{2}{3}\right)+\left(\frac{-2}{3^2}+\frac{3}{3^2}\right)+\left(\frac{3}{3^3}-\frac{4}{3^3}\right)+...+\left(\frac{-98}{3^{98}}+\frac{99}{3^{98}}\right)+\left(\frac{99}{3^{99}}-\frac{100}{3^{99}}\right)-\frac{100}{3^{100}}\)

\(\Rightarrow4A=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(\Rightarrow3.4A=3-1+\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}-\frac{100}{3^{99}}\)

\(\Rightarrow3.4A+4A=3+\left(1-1\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{3^2}-\frac{1}{3^2}\right)+...+\left(\frac{1}{3^{98}}-\frac{1}{3^{98}}\right)-\frac{101}{3^{99}}-\frac{100}{3^{100}}\)

\(\Rightarrow16A=3-\frac{99}{3^{99}}-\frac{100}{3^{100}}< 3\Rightarrow A< \frac{3}{16}< \frac{3}{4}\)