K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2020

\(A=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-...-\frac{100}{3^{100}}\)

\(\Rightarrow3A=1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)

\(\Rightarrow3A+A=1+\left(\frac{1}{3}-\frac{2}{3}\right)+\left(\frac{-2}{3^2}+\frac{3}{3^2}\right)+\left(\frac{3}{3^3}-\frac{4}{3^3}\right)+...+\left(\frac{-98}{3^{98}}+\frac{99}{3^{98}}\right)+\left(\frac{99}{3^{99}}-\frac{100}{3^{99}}\right)-\frac{100}{3^{100}}\)

\(\Rightarrow4A=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(\Rightarrow3.4A=3-1+\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}-\frac{100}{3^{99}}\)

\(\Rightarrow3.4A+4A=3+\left(1-1\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{3^2}-\frac{1}{3^2}\right)+...+\left(\frac{1}{3^{98}}-\frac{1}{3^{98}}\right)-\frac{101}{3^{99}}-\frac{100}{3^{100}}\)

\(\Rightarrow16A=3-\frac{99}{3^{99}}-\frac{100}{3^{100}}< 3\Rightarrow A< \frac{3}{16}< \frac{3}{4}\)

23 tháng 2 2021

\(\frac{1}{2}.\frac{2}{3}.\)\(...\frac{99}{100}=\frac{1.2.....99}{2.3.....100}=\frac{1.\left(2.....99\right)}{\left(2.3.....99\right).100}=\frac{1}{100}\)

23 tháng 2 2021

Phạm Phương Bảo Khuê . bạn giải chi tiết giúp mình với

4 tháng 10 2022

ai bt tự làm

 

15 tháng 4 2023

ngu tự chịu

13 tháng 2 2020

1/1+(-2)+3+(-4)+.....+19+(-20)

=1-2+3-4+.....+19-20

=(1+3+.....+19)-(2+4+.....+20)

={(19+1).[(19-1):2+1]:2}-{(20+2).[(20-2):2+1]:2}

={20.10:2}-{22.10:2}

=10:2.(20-22)

=5.(-2)

=-10

13 tháng 2 2020

các ý sau bạn làm theo mẫu nhé                                'cô_bé_DuDu'

AH
Akai Haruma
Giáo viên
31 tháng 12 2023

Lời giải:
Đặt \(A=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-....+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

\(3A=1-\frac{2}{3}+\frac{3}{3^2}-.....+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)

\(\Rightarrow 4A=A+3A=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+....-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(12A=3-1+\frac{1}{3}-\frac{1}{3^2}+...-\frac{1}{3^{98}}-\frac{100}{3^{99}}\)

$\Rightarrow 4A+12A=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}<3$

$\Rightarrow 16A< 3$

$\Rightarrow A< \frac{3}{16}$

28 tháng 2 2019

hihuihhihiuiuiiuuhihuihihuiuhiihuihihuihihu

28 tháng 2 2019

tui bt làm

27 tháng 11 2017

S=1-2+3-4+...+99-100

S=(1-2)+(3-4)+...+(99-100)

S=(-1)+(-1)+...+(-1)

=>S=(-1).50

S=-50

27 tháng 11 2017

S=-50 nha bạn .