Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
a: Bổ sung đê: góc ABC=60 độ
a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: ΔBAD=ΔBED
=>BA=BE
mà góc ABE=60 độ
nên ΔBAE đều
c: Xét ΔEAC có góc EAC=góc ECA=30 độ
nên ΔEAC cân tại E
d: AB=5cm
góc ABC=60 độ
ΔABC vuông tại A có cos ABC=AB/BC
=>BC=10cm
=>AC=5*căn 3(cm)
Bổ sung đề: \(\widehat{ABC}=60^0\)
a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔABD=ΔEBD(cạnh huyền-góc nhọn)
b) Ta có: ΔABD=ΔEBD(cmt)
nên BA=BE(hai cạnh tương ứng)
Xét ΔABE có BA=BE(cmt)
nên ΔBAE cân tại B(Định nghĩa tam giác cân)
Xét ΔABE cân tại B có \(\widehat{ABE}=60^0\)(gt)
nên ΔABE đều(Dấu hiệu nhận biết tam giác đều)
c) Xét ΔABC vuông tại A có
\(\cos\widehat{B}=\dfrac{AB}{BC}\)
\(\Leftrightarrow BC=\dfrac{AB}{\cos60^0}=\dfrac{5}{\dfrac{1}{2}}=10\left(cm\right)\)
Vậy: BC=10cm
a ) Ta có ΔABC cân tại A .
\(\Rightarrow\) AB = AC
Có AH là đường cao
\(\Rightarrow\) AH đồng thời là trung tuyến
\(\Rightarrow\) H là trung điểm của BC
Xét ΔAHB và ΔAHC có :
AB = AC
Góc AHB = Góc AHC = 90
BH = HC
\(\Rightarrow\) Δ AHB = Δ AHC ( c - g - c )
b ) Xét ΔAHB vuông tại H có .
\(AH=\sqrt{AB^2-BH^2}=\sqrt{5^2-4^2=3}\)
c ) Xét ΔABM có BH vừa là đường cao vừa là trung tuyến .
\(\Rightarrow\) ΔABM cân tại B
d ) Ta có : BAM cân tại B
\(\Rightarrow\) Góc BAM = Góc BMA
Xét ΔBAC cân tại A có HA là trung tuyến
\(\Rightarrow\) AH đồng thời là tia phân giác của ΔABC .
\(\Rightarrow\) Góc BAH = Góc CAH
\(\Rightarrow\) Góc BMA = Góc HAC
Mà 2 góc này ở vị trí so le trong của BM và AC .
\(\Rightarrow\) BM // AC
a) ( Cái này có khá nhiều cách chứng minh nhé . )
Xét tam giác vuông AHB và tam giác vuông AHC có :
AB = AC ( tam giác ABC cân )
AH chung
=> Tam giác vuông AHB = tam giác vuông AHC ( ch-cgv )
b) => HB = HC ( hai cạnh tương ứng )
Mà BC = 8cm
=> HB = HC = BC/2 = 8/2 = 4cm
Áp dụng định lí Pytago cho tam giác vuông AHB ( AHC cũng được ) ta có :
AB2 = AH2 + HB2
52 = AH2 + 42
=> \(AH=\sqrt{5^2-4^2}=\sqrt{25-16}=3cm\)
c) HM là tia đối của HA
=> ^AHB + ^BHM = 1800
=> 900 + ^BHM = 1800
=> ^BHM = ^AHB = 900 => Tam giác BHM vuông tại H
Xét tam giác vuông AHB và tam giác vuông BHM ta có :
HM = HA ( gt )
^BHM = ^AHB ( cmt )
HB chung
=> Tam giác AHB = tam giác BHM ( c.g.c )
=> BM = BA ( hai cạnh tương ứng )
Tam giác ABM có BM = BA ( cmt ) => Tam giác ABM cân tại B
d) Ta có : Tam giác AHB = Tam giác AHC ( theo ý a)
Tam giác AHB = Tam giác BHM ( theo ý c)
Theo tính chất bắc cầu => Tam giác AHC = tam giác BHM
=> ^HBM = ^ACH ( hai góc tương ứng )
mà hai góc ở vị trí so le trong
=> BM // AC ( đpcm )
( Hình có thể k đc đẹp lắm )
Bài 1:
a, Xét tg ABD và tg EBD, có:
góc A= góc E(90o)
BD chung
góc ABD= góc DBE(tia phân giác)
=>tg ABD= tg EBD.
b, Ta có: tg ABD= tg DBE(cm câu a)
=>AB=BE(2 cạnh tương ứng)
=>tg ABE cân tại B.
Mà tg cân ABE có góc B=60o, nên tg ABE là tg đều.
c, Ta có: góc A+ góc B+góc C=180o(ĐL tổng 3 góc của tg)
=>góc B=180o-(góc A+ góc C)=180o-(90o+60o)=30o
Vì tg ABE là tg đều, nên góc A=60o.
Ta có: góc A=góc BAE+ góc AEC.
=>90o=60o+ góc AEC=30o.
=> góc AEC= góc C(=30o)
=>tg AEC cân tại E.
=>AE=EC.
Mà AE=5cm(tg đều), nên EC=5cm.
Vậy, độ dài cạnh BC là:
BE+EC=5+5=10.
=>BC= 10cm.
a: Ta có: AH⊥BC
nên \(\widehat{AHB}=\widehat{AHC}=90^0\)
b: BH=CH=BC/2=4cm
=>AH=3cm
c: Xét ΔABM có
BH là đường cao
BH là đường trung tuyến
Do đó: ΔABM cân tại B
d: Xét tứ giác ABMC có
H là trung điểm của AM
H là trung điểm của BC
Do đó: ABMC là hình bình hành
Suy ra: BM//AC
bạn đăng tách ra nhé
Bài 1 :
Theo định lí Pytago tam giác ABC vuông tại A
\(AB=\sqrt{BC^2-AC^2}=9cm\)
Chu vi tam giác ABC là 41 + 40 + 9 = 90 cm