Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(A=\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}+2\right)}:\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{\sqrt{x}-2}{\sqrt{x}}\cdot\dfrac{\sqrt{x}}{\sqrt{x}+1}=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)
2: căn x-2<căn x+1
=>A<1
3: A=1/4
=>căn x-2/căn x+1=1/4
=>4 căn x-8=căn x+1
=>3 căn x=9
=>x=9
Coi như bài toán đã cho là x;y;z hết từ điều kiện đến biểu thức (lẫn lộn abc với xyz)
Đặt \(\left(x^3;y^3;z^3\right)=\left(a^2;b^2;c^2\right)\Rightarrow abc=1\)
Ta có: \(Q=\dfrac{1}{a^2+b^2+b^2+1+2}+\dfrac{1}{b^2+c^2+c^2+1+2}+\dfrac{1}{c^2+a^2+a^2+1+2}\)
\(Q\le\dfrac{1}{2ab+2b+2}+\dfrac{1}{2bc+2c+2}+\dfrac{1}{2ca+2a+2}\)
\(Q\le\dfrac{1}{2}\left(\dfrac{1}{ab+b+1}+\dfrac{ab}{ab.bc+abc+ab}+\dfrac{b}{cab+ab+b}\right)\)
\(Q\le\dfrac{1}{2}\left(\dfrac{1}{ab+b+1}+\dfrac{ab}{b+1+ab}+\dfrac{b}{1+ab+b}\right)=\dfrac{1}{2}\)
Áp dụng định lí Pytago vào ΔABD vuông tại A, ta được:
\(AB^2+AD^2=BD^2\)
\(\Leftrightarrow BD^2=6^2+8^2=100\)
hay BD=10(cm)
Ta có: ABCD là hình chữ nhật
mà O là giao điểm của hai đường chéo AC và BD
nên O là trung điểm chung của AC và BD
Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAD vuông tại A có AH là đường cao ứng với cạnh huyền BD, ta được:
\(AH\cdot BD=AB\cdot AD\)
\(\Leftrightarrow AH=4.8\left(cm\right)\)
Ta có: ΔABD vuông tại A
mà AO là đường trung tuyến ứng với cạnh huyền BD
nên \(AO=\dfrac{BD}{2}=\dfrac{10}{2}=5\left(cm\right)\)
Áp dụng định lí Pytago vào ΔAHO vuông tại H, ta được:
\(AO^2=AH^2+HO^2\)
\(\Leftrightarrow HO^2=5^2-4.8^2=1.96\)
hay HO=1,4(cm)
Diện tích tam giác AHO là:
\(S_{AHO}=\dfrac{HA\cdot HO}{2}=\dfrac{1.4\cdot4.8}{2}=3.36\left(cm^2\right)\)
10: Ta có: \(\left(\dfrac{x-4}{x-2\sqrt{x}}+\dfrac{3}{\sqrt{x}-2}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}}-\dfrac{\sqrt{x}}{\sqrt{x}-2}\right)\)
\(=\dfrac{x+3\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{x-4-x}\)
\(=\dfrac{-x-3\sqrt{x}+4}{4}\)
Lời giải:
Đặt \(\sqrt[3]{5\sqrt{2}+7}=m; \sqrt[3]{5\sqrt{2}-7}=n\)
\(m^3-n^3=14\)
\(mn=1\)
\((a+b+c)^3=(m-n)^3=m^3-3mn(m-n)-n^3=14-3(m-n)\)
\(\Leftrightarrow (a+b+c)^3=14-3(a+b+c)\)
\(\Leftrightarrow (a+b+c)^3+3(a+b+c)-14=0\)
\(\Leftrightarrow (a+b+c)^2[(a+b+c)-2]+2(a+b+c)(a+b+c-2)+7(a+b+c-2)=0\)
\(\Leftrightarrow (a+b+c-2)[(a+b+c)^2+2(a+b+c)+7]=0\)
Dễ thấy biểu thức trong ngoặc vuông $>0$ nên $a+b+c-2=0$
$\Leftrightarrow a+b+c=2$
$ab+bc+ac=\frac{(a+b+c)^2-(a^2+b^2+c^2)}{2}=\frac{2^2-1}{2}=\frac{3}{2}$
a: \(VT=\left(\dfrac{\sqrt{7}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}+\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{2\left(\sqrt{3}-1\right)}\right)\cdot\left(\sqrt{7}-\sqrt{5}\right)\)
\(=\left(\dfrac{\sqrt{7}+\sqrt{5}}{2}\right)\cdot\left(\sqrt{7}-\sqrt{5}\right)=\dfrac{7-5}{2}=\dfrac{2}{2}=1\)
=VP
b: \(VT=3-\sqrt{5}+2\left(\sqrt{5}+1\right)-\left|\sqrt{5}-2\right|\)
=3-căn 5+2căn 5+2-căn 5+2
=3+2+2=7
=VP
5:
a: =>2x+3=3+2căn 2
=>2x=2căn 2
=>x=căn 2
b: =>10+căn 3x=10+4căn 6
=>căn 3x=4căn 6=căn 96
=>3x=96
=>x=32
c: =>3x-2=7-4căn 3
=>3x=9-4căn 3
=>x=3-4/3*căn 3
a: =>\(2\cdot\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
=>2*căn x-5=4
=>căn x-5=2
=>x-5=4
=>x=9
\(a,\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\\ =\sqrt{\sqrt{5}-\sqrt{3-\left(2\sqrt{5}-3\right)}}\\ =\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\\ =\sqrt{\sqrt{5}-\left(\sqrt{5}-1\right)}\\ =\sqrt{1}=1\)
\(b,\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\\ =\sqrt{13+30\sqrt{2+\left(2\sqrt{2}+1\right)}}\\ =\sqrt{13+30\sqrt{3+2\sqrt{2}}}\\ =\sqrt{13+30\left(\sqrt{2}+1\right)}\\ =\sqrt{43+30\sqrt{2}}\\ =5+3\sqrt{2}\)
\(c,\sqrt{1+\sqrt{3+\sqrt{13+4\sqrt{3}}}}+\sqrt{1-\sqrt{3-\sqrt{13-4\sqrt{3}}}}\\ =\sqrt{1+\sqrt{3+\left(2\sqrt{3}+1\right)}}+\sqrt{1-\sqrt{3-\left(2\sqrt{3}-1\right)}}\\ =\sqrt{1+\sqrt{4+2\sqrt{3}}}+\sqrt{1-\sqrt{4-2\sqrt{3}}}\\ =\sqrt{1+\left(\sqrt{3}+1\right)}+\sqrt{1-\left(\sqrt{3}-1\right)}\\ =\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\)
Đặt \(A=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\)
\(A^2=4+2\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}=4+2=6\\ A=\sqrt{6}\)
Vậy gt biểu thức là \(\sqrt{6}\)
\(d,\sqrt{5-\sqrt{13+4\sqrt{3}}}+\sqrt{3+\sqrt{13+4\sqrt{3}}}\\ =\sqrt{5-\left(2\sqrt{3}+1\right)}+\sqrt{3+\left(2\sqrt{3}+1\right)}\\ =\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}\\ =\sqrt{3}-1+\sqrt{3}+1=2\sqrt{3}\)
\(4,\)
\(A=\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\\ A^2=2-\sqrt{3}+2+\sqrt{3}+2\sqrt{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\\ A^2=4+2=6\\ A=\sqrt{6}\\ B=\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\\ B^2=4-\sqrt{7}+4+\sqrt{7}-2\sqrt{\left(4-\sqrt{7}\right)\left(4+\sqrt{7}\right)}\\ B^2=8-2\sqrt{9}=8-6=2\\ B=\sqrt{2}\)
\(5,\\ a,\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\\ =\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\\ =\sqrt{2}+\sqrt{3}-\sqrt{3}+\sqrt{2}=2\sqrt{2}\\ b,\sqrt{7-2\sqrt{10}}-\sqrt{7+2\sqrt{10}}\\ =\left(\sqrt{5}-\sqrt{2}\right)-\left(\sqrt{2}+\sqrt{5}\right)=-2\sqrt{2}\\ c,\sqrt{24+8\sqrt{5}}+\sqrt{9-4\sqrt{5}}\\ =\left(2\sqrt{5}-2\right)+\left(\sqrt{5}-2\right)\\ =3\sqrt{5}\\ d,\sqrt{17-12\sqrt{2}}+\sqrt{9+4\sqrt{2}}\\ =\left(3-2\sqrt{2}\right)+\left(2\sqrt{2}+1\right)\\ =4\)