K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5:

a: =>2x+3=3+2căn 2

=>2x=2căn 2

=>x=căn 2

b: =>10+căn 3x=10+4căn 6

=>căn 3x=4căn 6=căn 96

=>3x=96

=>x=32

c: =>3x-2=7-4căn 3

=>3x=9-4căn 3

=>x=3-4/3*căn 3

a: =>\(2\cdot\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

=>2*căn x-5=4

=>căn x-5=2

=>x-5=4

=>x=9

23 tháng 2 2022

Bạn đăng tách 2 bài ra cho mn cùng giúp nhé 

 

Câu 2: 

a: Thay m=-1 vào (1), ta được:

\(x^2-2x+2\cdot\left(-1\right)+3=0\)

=>x=1

b: \(\text{Δ}=\left(2m+4\right)^2-4\left(2m+3\right)=4m^2+16m+16-8m-12\)

\(=4m^2-4m+4=\left(2m-1\right)^2+3>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2-1< =0\)

\(\Leftrightarrow\left(2m+4\right)^2-2\left(2m-3\right)-1< =0\)

\(\Leftrightarrow4m^2+16m+16-4m+6-1< =0\)

\(\Leftrightarrow4m^2+12m+21< =0\)

\(\Leftrightarrow m\in\varnothing\)

a) Ta có: \(\dfrac{1}{2}\sqrt{48}-2\sqrt{75}-\dfrac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\dfrac{1}{3}}\)

\(=\dfrac{1}{2}\cdot4\sqrt{3}-2\cdot5\sqrt{3}-\sqrt{3}+5\cdot\dfrac{2}{\sqrt{3}}\)

\(=-9\sqrt{3}+\dfrac{10}{\sqrt{3}}\)

\(=\dfrac{-27+10}{\sqrt{3}}=\dfrac{-17\sqrt{3}}{3}\)

1) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot10=6\cdot8=48\)

hay AH=4,8(cm)

 

18 tháng 2 2021

Bạn ơi xem lại cái ở trên nha!

NV
9 tháng 1 2022

Coi như bài toán đã cho là x;y;z hết từ điều kiện đến biểu thức (lẫn lộn abc với xyz)

Đặt \(\left(x^3;y^3;z^3\right)=\left(a^2;b^2;c^2\right)\Rightarrow abc=1\)

Ta có: \(Q=\dfrac{1}{a^2+b^2+b^2+1+2}+\dfrac{1}{b^2+c^2+c^2+1+2}+\dfrac{1}{c^2+a^2+a^2+1+2}\)

\(Q\le\dfrac{1}{2ab+2b+2}+\dfrac{1}{2bc+2c+2}+\dfrac{1}{2ca+2a+2}\)

\(Q\le\dfrac{1}{2}\left(\dfrac{1}{ab+b+1}+\dfrac{ab}{ab.bc+abc+ab}+\dfrac{b}{cab+ab+b}\right)\)

\(Q\le\dfrac{1}{2}\left(\dfrac{1}{ab+b+1}+\dfrac{ab}{b+1+ab}+\dfrac{b}{1+ab+b}\right)=\dfrac{1}{2}\)