Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(8,=\dfrac{13}{5}\left(\dfrac{3}{7}+\dfrac{4}{7}\right)-\dfrac{3}{5}=\dfrac{13}{5}-\dfrac{3}{5}=\dfrac{4}{5}\\ 9,=-\dfrac{5}{7}\left(\dfrac{31}{33}+\dfrac{2}{33}\right)+\dfrac{22}{17}=-\dfrac{5}{7}+\dfrac{22}{17}=\dfrac{69}{119}\\ 10,=-\dfrac{2}{15}\cdot5+\dfrac{2}{15}-\dfrac{4}{3}\cdot3=-\dfrac{2}{3}+\dfrac{2}{15}-4=-\dfrac{68}{15}\\ 11,=\dfrac{17}{3}\left(1-\dfrac{9}{17}+1-\dfrac{10}{17}\right)+\dfrac{12-25}{13}=\dfrac{17}{3}\cdot\left(2-1\right)-\dfrac{13}{13}=\dfrac{17}{3}-1=\dfrac{14}{3}\)
11: \(=\dfrac{-25}{13}+\dfrac{8}{17}\cdot\dfrac{17}{3}+\dfrac{7}{17}\cdot\dfrac{17}{3}+\dfrac{12}{13}\)
\(=-1+\dfrac{8}{3}+\dfrac{7}{3}\)
=-1+5
=4
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
b: Ta có: ΔABD=ΔEBD
nên DA=DE và \(\widehat{BAD}=\widehat{BED}=90^0\)
hay DE⊥BC
Gọi gốc là điểm A, chỗ gãy là B, ngọn đã gãy là điểm C
Xét tam giác ABC vuông tại A có: AB = 6m, BC = 16m - 6m = 10m
=> AB2 + AC2 = BC2 (Định lý Py-ta-go)
Thay: 62 + AC2 = 102
36 + AC2 = 100
AC2 = 100 - 36 = 64
AC = 8 (m)
Vậy khoảng cách từ gốc đến ngọn cây bị gãy là 8 mét
Nếu đúng hãy K cho mình nha
Học tốt nhé
a: Xét ΔABH vuông tại H và ΔMBH vuông tại H có
HB chung
HA=HM
Do đó: ΔABH=ΔMBH
\(\widehat{XAB}\) + \(\widehat{ABZ}\) = 1300 + 500 = 1800
Vì góc XAB và góc ABZ là hai góc trong cùng phía nên
Ax // BZ
BZ // Cy ⇔ \(x\) + \(\widehat{yCB}\) =1800
⇒ \(x\) = 1800 - 1450 = 350
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{\dfrac{1}{8}}=\dfrac{b}{\dfrac{1}{9}}=\dfrac{c}{\dfrac{1}{10}}=\dfrac{a+b+c}{\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}}=\dfrac{121}{\dfrac{121}{360}}=360\)
Do đó: a=45; b=40; c=36
Bài 2:
Áp dụng tính chất của dãy tỉ số bằng nhau,ta được
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a+b+c}{2+3+4}=\dfrac{45}{9}=5\)
Do đó: a=10; b=15;c=20