Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)=x^3+2ax+b\)
Vì \(f\left(x\right)⋮\left(x-1\right)\)\(\Rightarrow f\left(1\right)=0\)\(\Leftrightarrow1+2a+b=0\)\(\Leftrightarrow2a+b=-1\)(1)
Vì \(f\left(x\right)\)chia \(x+2\)dư \(3\) \(\Rightarrow f\left(-2\right)=3\)
\(\Leftrightarrow-8-4a+b=3\Leftrightarrow-4a+b=11\Leftrightarrow4a-b=-11\)(2)
Cộng (1) với (2) ta được \(2a+b+4a-b=6a=-1-11=-12\)\(\Rightarrow a=-2\)
\(\Rightarrow b=3\)
Vậy \(a=-2;b=3\)
Để \(\left(4x^4-11x^3-2ax^2+5bx-6\right)⋮\left(x^2-2x-3\right)\) thì :
\(4x^4-11x^3-2ax^2+5bx-6=\left(x^2-2x-3\right)\cdot Q\)
\(4x^4-11x^3-2ax^2+5bx-6=\left(x^2-3x+x-3\right)\cdot Q\)
\(4x^4-11x^3-2ax^2+5bx-6=\left(x-3\right)\left(x+1\right)\cdot Q\)
Vì đẳng thức đúng với mọi x
+) Đặt x = 3 ta có :
\(4\cdot3^4-11\cdot3^3-2\cdot a\cdot3^2+5\cdot b\cdot3-6=\left(3-3\right)\left(3+1\right)\cdot Q\)
\(21-18a+15b=0\)
\(18a-15b=21\left(1\right)\)
+) Đặt x = -1 ta có :
\(4\cdot\left(-1\right)^4-11\cdot\left(-1\right)^3-2\cdot a\cdot\left(-1\right)^2+5\cdot b\cdot\left(-1\right)-6=\left(-1-3\right)\left(-1+1\right)\cdot Q\)
\(9-2a-5b=0\)
\(2a+5b=9\)
\(6a+15b=27\left(2\right)\)
Lấy (1) + (2) ta có : \(18a-15b+6a+15b=21+27\)
\(24a=48\)
\(a=2\)
\(\Rightarrow b=1\)
Vậy a = 2; b = 1
Lời giải:
Đặt $f(x)=x^3+2ax+b$
Áp dụng định lý Bê-du về phép chia đa thức, ta có:
\(\left\{\begin{matrix} f(1)=1+2a+b=0\\ f(-2)=(-2)^3+2a(-2)+b=3\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2a+b=-1\\ -4a+b=11\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} a=-2\\ b=3\end{matrix}\right.\)
Vậy.......
c)đề sửa lại :x^2+xy-2013x-2014y-2015=0
- x khác 2013
- y=\(\frac{-x^2+2012x+2014}{x-2013}\)
=>y=(-x^2+2013x-x+2013+1)/(x-2013)=-x-1+1/(x-2013)
để pt có nghiệm nguyên => 1)x-2013=1=>x=2014
2)x-2013=-1=>x=2012
tu tim y
Giả sử : \(f\left(x\right)=\left(x^2-2x-3\right).Q\left(x\right)+r=\left(x-3\right)\left(x+1\right).Q\left(x\right)+r\)
với Q(x) là đa thức thương và r là số dư
Vì f(x) chia hết cho x2-2x-3 nên r = 0
Suy ra : \(f\left(x\right)=\left(x-3\right)\left(x+1\right).Q\left(x\right)\Rightarrow\left[\begin{array}{nghiempt}f\left(-1\right)=0\\f\left(3\right)=0\end{array}\right.\)
\(f\left(-1\right)=0\Leftrightarrow-2a-5b=-9\)
\(f\left(3\right)=0\Leftrightarrow-18a+15b=-21\)
Ta có hệ : \(\begin{cases}-2a-5b=-9\\-18a+15b=-21\end{cases}\)\(\Leftrightarrow\begin{cases}a=2\\b=1\end{cases}\)
Vậy a = 2 , b = 1
bn tick cho mik đi rùi mik giải cho