K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
DD
Đoàn Đức Hà
Giáo viên
7 tháng 6 2021
Để suy ra đồ thị hàm số \(y=\left|f\left(x\right)\right|\)từ đồ thị hàm số \(y=f\left(x\right)\)ta: phần nằm phía trên trục \(Ox\)giữ nguyên, phần nằm phía dưới trục \(Ox\)ta lấy đối xứng lên.
Số điểm cực trị của hàm số \(y=\left|f\left(x\right)\right|\)là \(3+2=5\).
Chọn D.
JM
1
NH
5
DT
1
AV
1
28 tháng 8 2017
câu này có vẻ bựa đấy!
chắc trên trang web này không ai đủ trình giải bài này đâu
đáp án là số 0 nhé còn cách giải thì mình để lại cho mấy bạn cao thủ ở sau hjihi
\(\left\{{}\begin{matrix}BD\perp AC\left(\text{hai đường chéo hình vuông}\right)\\SA\perp\left(ABCD\right)\Rightarrow SA\perp BD\end{matrix}\right.\) \(\Rightarrow BD\perp\left(SAC\right)\)
\(\Rightarrow BD\perp SC\)
Mặt khác \(BD\in\left(SBD\right)\Rightarrow\left(SBD\right)\perp\left(SAC\right)\)
b.
Từ A kẻ \(AH\perp SB\)
Ta có: \(\left\{{}\begin{matrix}AD\perp AB\\SA\perp\left(ABCD\right)\Rightarrow SA\perp AD\end{matrix}\right.\) \(\Rightarrow AD\perp\left(SAB\right)\Rightarrow AD\perp AH\)
\(\Rightarrow AH\) là đường vuông góc chung của AD và SB
\(\Rightarrow AH=d\left(SB;AD\right)\)
\(\dfrac{1}{AH^2}=\dfrac{1}{SA^2}+\dfrac{1}{AB^2}=\dfrac{2}{a^2}\Rightarrow AH=\dfrac{a\sqrt{2}}{2}\)
Gọi O là tâm đáy, từ O kẻ \(OK\perp SC\)
Mà \(BD\perp\left(SAC\right)\) theo câu a \(\Rightarrow BD\perp OK\)
\(\Rightarrow OK\) là đường vuông góc chung của SC và BD hay \(OK=d\left(SC;BD\right)\)
\(AC=AB\sqrt{2}=a\sqrt{2}\) ; \(SC=\sqrt{SA^2+AC^2}=a\sqrt{3}\)
\(OK=OC.sin\widehat{SCA}=\dfrac{1}{2}AC.\dfrac{SA}{SC}=\dfrac{a\sqrt{6}}{6}\)