Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{4n+3}{2n+1}=\frac{2n+1+2n+2}{2n+1}=\frac{2n+1}{2n+1}+\frac{2n+2}{2n+1}=1+\frac{2n+1+1}{2n+1}=1+\frac{2n+1}{2n+1}+\frac{1}{2n+1}=1+1+\frac{1}{2n+1}\)
Để (4n + 3) chia hết cho (2n+1) thì \(\frac{1}{2n+1}\) phải là số nguyên
\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{1;-1\right\}\)
\(2n+1=1\Rightarrow n=0\)
\(2n+1=-1\Rightarrow n=-1\) (loại)
Vậy n = 0
4n+3 ⋮ 2n+1
=> [4n+3 - 2(2n+1)] ⋮ 2n+1
=> [(4n+3) - (4n+2)] ⋮ 2n+1
=> 1 ⋮ 2n+1
=> 2n+1 \(\in\) Ư(1) = {1}
=> n = {0}
a)Ta có: 2n+9 chia hết n+3
<=>(2n+9)-2(n+3) chia hết n+3
<=>(2n+9)-(2n+6) chia hết n+3
<=>3 chia hết n+3
<=>n+3 thuộc {1;3}
<=>n=0
Vậy n = 0
b) Ta có 3n-1 chia hết cho 3-2n
=> 6n-2 chia hết cho 3-2n
=> 3(3-2n)-11 chia hết cho 3-2n
=> 11 chia hết cho 3-2n
=> 3-2n là ước của 11 và n là số tự nhiên => 3-2n thuộc {1;11}
• 3-2n=1 => n=1
• 3-2n=11=> n ko là số tự nhiên
Vậy n=1
c) (15 - 4n) chia hết cho n
=> 15 chia hết cho n
=> n ∈ Ư(15) = {-15; -5; -3; -1; 1; 3; 5; 15}
mà n ∈ N và n < 4
=> n = {1; 3}
d) n=7 vì (n+13)chia hết cho (n-5) và n lớn hơn 5
e) 15-2n = 13+ (2-2n) = 13+2(1-n) : n-1 =
=> n-1 là ước dương của 13
=> n-1 = 13 hoặc n-1 = 1 hoặc n = -1 hoặc n=-13
=> n=14 hoặc n= 2 hoặc n=0 howjc n=-12
Mà n thuộc N và n<8 => n=0 hoặc n=2
g)
Vì
Mà 4n - 1 chia 4 dư 3; do
1)3n-1⋮n-3
=>3n-1-8+8⋮n-3
=>3n-9+8⋮n-3
=>3(n-3)+8⋮n-3
=>8⋮n-3(do 3(n-3)⋮n-3)
=>n-3∈Ư(8)=>n-3∈{1,2,4,8}
+)n-3=1=>n=1+3=4
+)n-3=2=>n=2+3=5
+)n-3=4=>n=4+3=7
+)n-3=8=>n=8+3=11
Vậyn∈{4,5,7,11}
a, ta có 3n-1=3(n-3)+8 chia hết cho n-3 khi n-3 là ước của 8 hay \(n-3\in\left\{\pm1,\pm2,\pm4,\pm8\right\}\Rightarrow n\in\left\{1,2,4,5,7,11\right\}\)
b, ta có 4n+1=2(2n-1)+3 chia hết cho 2n-1 khi 2n-1 là ước của 3 hay \(2n-1\in\left\{\pm1,\pm3\right\}\Rightarrow n\in\left\{0,1,2\right\}\)
c, ta có với n=0 thì thỏa mãn
với n khác 0 thì 2 không chia hết cho 2n+1 ta được 10n+6 chia hết cho 2n+1. ta có 10n+6=5(2n+1)+3 chia hết cho 2n+1 khi 2n+1 là ước của 3 hay \(2n+1\in\left\{\pm3,\pm1\right\}\Rightarrow n\in\left\{0,1\right\}\)
Câu 1:
\(2n+1=2n-2+3=2\left(n-1\right)+3⋮\left(n-1\right)\Leftrightarrow3⋮\left(n-1\right)\)
mà \(n\)là số nguyên nên \(n-1\inƯ\left(3\right)=\left\{-3,-1,1,3\right\}\Leftrightarrow n\in\left\{-2,0,2,4\right\}\).
Câu 2:
\(4n-5=4n-2-3=2\left(2n-1\right)-3⋮\left(2n-1\right)\Leftrightarrow3⋮\left(2n-1\right)\)
mà \(n\)là số nguyên nên \(2n-1\inƯ\left(3\right)=\left\{-3,-1,1,3\right\}\Leftrightarrow n\in\left\{-1,0,1,2\right\}\).
C1:
2n+1⋮n+1
=> 2(n+1)-1⋮n+1
=> -1⋮n+1( vi 2(n+1)⋮n+1)
=> n+1∈U(-1)=(1,-1)
=>n=0,-2
C2:
Ta có: 4n-5 chia hết cho 2n-1
=>4n-2-3 chia hết cho 2n-1
=>2.(2n-1)-3 chia hết cho 2n-1
=>3 chia hết cho 2n-1
=>2n-1=Ư(3)=(-1,-3,1,3)
=>2n=(0,-2,2,4)
=>n=(0,-1,1,2)
Vậy n=0,-1,1,2
(4n+3) chia hết cho (2n-1)
Ta có:
(2n-1) chia hết cho (2n-1)
(=)2(2n-1) chia hết cho (2n-1)
4n-2 chia hết cho (2n-1)
Lại có: (4n-3) chia hết cho (2n-1)
[4n-2+(2+3)] chia hết cho (2n-1)
[4n-2+5] chia hết cho (2n-1)
Vì(4n-2) chia hết cho(2n-1)
=>5 chia hết cho(2n-1)
=>(2n-1) thuộc {1;5}
Ta có bảng:
Thử lai; Đúng
Vậy n thuộc {1;3}