K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2017

Dễ thế mà không làm được

a: P(x)=2x^5-2x^5+4x^4-3x^4+5=x^4+5

Q(x)=-5x^4+2x^4-x^3+3x^2-10x+2

=-3x^4-x^3+3x^2-10x+2

b: P(x)+Q(x)

=x^4+5-3x^4-x^3+3x^2-10x+2

=-2x^4-x^3+3x^2-10x+7

Q(x)-P(x)

=-3x^4-x^3+3x^2-10x+2-x^4-5

=-4x^4-x^3+3x^2-10x-3

P(x)-Q(x)=-(Q(x)-P(x))

=4x^4+x^3-3x^2+10x+3

23 tháng 9 2016

bài này dễ vậy mà không làm được.Lười

8 tháng 7 2020

bn ngon thì làm đi

19 tháng 4 2019

\(B\left(x\right)=x^5+3x^3+x=x\left(x^4+3x^2+1\right)=x\left(x^4+x^2+x^2+1+x^2\right)=x\left[x^2\left(x^2+1\right)+x^2+1+x^2\right]\)

\(=x\left[\left(x^2+1\right)\left(x^2+1\right)+x^2\right]=x\left[\left(x^2+1\right)^2+x^2\right]\)

Vì: \(x^2+1>0,x^2\ge0\)nên \(\left(x^2+1\right)^2+x^2>0\)

Vậy B(x)  có nghiệm khi x=0

1: \(\dfrac{x-1}{3}=\dfrac{y-2}{4}=\dfrac{z+7}{5}\)

mà x+y-z=8

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x-1}{3}=\dfrac{y-2}{4}=\dfrac{z+7}{5}=\dfrac{x-1+y-2-z-7}{3+4-5}=\dfrac{8-3-7}{2}=\dfrac{-2}{2}=-1\)

=>\(\left\{{}\begin{matrix}x-1=-1\cdot3=-3\\y-2=-1\cdot4=-4\\z+7=-1\cdot5=-5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-2\\y=-2\\z=-12\end{matrix}\right.\)

2: \(\dfrac{x+1}{3}=\dfrac{y+2}{-4}=\dfrac{z-3}{5}\)

mà 3x+2y=47-42=5

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x+1}{3}=\dfrac{y+2}{-4}=\dfrac{z-3}{5}=\dfrac{3x+3+2y+4}{3\cdot3+2\left(-4\right)}=\dfrac{5+7}{9-8}=12\)

=>\(\left\{{}\begin{matrix}x+1=12\cdot3=36\\y+2=-12\cdot4=-48\\z-3=12\cdot5=60\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=35\\y=-48-2=-50\\z=60+3=63\end{matrix}\right.\)