Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x2 + x)2 - 2(x2 + x) - 15
= [(x2 + x)2 - 2(x2 + x) + 1] - 16
= (x2 + x + 1)2 - 42
= (x2 + x + 5)(x2 + x - 3)
( x2 + x )2 - 2 ( x2 + x ) - 15
Đặt t = x2 + x , đa thức trở thành
t2 - 2t - 15
= ( t2 + 3t ) - ( 5t + 15 )
= t ( t + 3 ) - 5 ( t + 3 )
= ( t - 5 ) ( t + 3 )
= ( x2 + x - 5 ) ( x2 + x + 3 )
Bài 1:
a. $=2x(x-3)$
b. $=x^3(x+3)+(x+3)=(x^3+1)(x+3)=(x+1)(x^2-x+1)(x+3)$
c. $=64-(x^2-2xy+y^2)=8^2-(x-y)^2$
$=(8-x+y)(8+x-y)$
Bài 2:
$(x+5)(x+1)+(x-2)(x^2+2x+4)-x(x^2+x-2)$
$=x^2+6x+5+(x^3-2^3)-(x^3+x^2-2x)$
$=x^2+6x+5+x^3-8-x^3-x^2+2x$
$=8x-3$
Ta có đpcm.
\(=\left(1-x\right)\left(6a+2a^2\right)=2a\left(3+2a\right)\left(1-x\right)\\ 2,=\left(x-5\right)\left(x-3-2\right)=\left(x-5\right)^2\)
A3+B3= (A+B)3-3AB(A+B)= 23-3*(-6)*2=8+36=44
Nhớ k cho mik nha ..
Xét ΔMAQ vuông tại A và ΔNBP vuông tại B có
MQ=NP
góc Q=góc P
=>ΔMAQ=ΔNBP
=>AQ=BP
=>AQ+AB=BP+BA
=>BQ=AP
\(x^3-7x^2-13x+91=0\)
\(\Rightarrow x^2\left(x-7\right)-13\left(x-7\right)=0\)
\(\Rightarrow\left(x-7\right)\left(x^2-13\right)=0\)
\(\Rightarrow\left(x-7\right)\left(x-\sqrt{13}\right)\left(x+\sqrt{13}\right)=0\)
Tìm được \(x\in\left\{7;\sqrt{13};-\sqrt{13}\right\}\)
(x + 2)(x - 1) - x(x + 3)
= x^2 - x + 2x - 2 - x^2 - 3x
= -2x - 2
giúp mình giải câu này vs
\(\frac{6x}{x^2-9}+\frac{5x}{x-3}+\frac{x}{x+3}\)
a: Xét tứ giác BMDN có
BM//DN
BM=DN
Do đó: BMDN là hình bình hành