Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Xét tg vuông ABE và tg vuông PBE có
BE chung
\(\widehat{ABE}=\widehat{PBE}\left(gt\right)\)
\(\Rightarrow\Delta ABE=\Delta PBE\) (cạnh huyền và góc nhọn tương ứng bằng nhau)
b/ Xét tg ABI và tg PBI có
\(\Delta ABE=\Delta PBE\Rightarrow BA=BP\)
BI chung
\(\widehat{ABI}=\widehat{PBI}\left(gt\right)\)
\(\Rightarrow\Delta ABI=\Delta PBI\left(c.g.c\right)\Rightarrow AI=IP\) (1)
Xét tg vuông ACF và tg vuông QCF có
CF chung
\(\widehat{ACF}=\widehat{QCF}\left(gt\right)\)
\(\Rightarrow\Delta ACF=\Delta QCF\) (cạnh huyền và góc nhọn tương ứng bằng nhau)
Xét tg ACI và tg QCI có
\(\Delta ACF=\Delta QCF\Rightarrow AC=QC\)
CI chung
\(\widehat{ACI}=\widehat{QCI}\left(gt\right)\)
\(\Rightarrow\Delta ACI=\Delta QCI\left(c.g.c\right)\Rightarrow AI=IQ\) (2)
Từ (1) và (2) \(\Rightarrow AI=IP=IQ\)
c/
Xét tg QIP có
IQ=IP => tg QIP cân ở I
Mà \(ID\perp BC\)
\(\Rightarrow DQ=DP\) (Trong tg cân đường cao xuất phát từ đỉnh đồng thời là đường trung tuyến)
=> D là trung điểm của PQ
a/ Xét tứ giác AEDC có
IA=ID; IC=IE => AEDC là hình bình hành (tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường là hbh)
=> ED//AC và ED=AC (trong hbh các cặp cạnh đối song song và = nhau từng đôi một)
b/
Ta có AEDC là hbh => AE//DC và AE=DC (trong hbh các cặp cạnh đối song song và = nhau từng đôi một)
Mà DC=DB => AE=BD
\(DB\in DC\) => AE//DB
=> AEBD là hình bình hành (Tứ giác có 1 cặp cạnh đối // và bằng nhau thì là hbh)
=> EB=AD và EB//AD (trong hbh các cặp cạnh đối song song và = nhau từng đôi một)
Ta có EB//AD mà \(AD\perp BC\Rightarrow EB\perp BC\)
c/ Ta có AEBD là hbh => JA=JB (Trong hbh hai đường chéo cắt nhau tại trung điểm mỗi đường) => J là trung điểm AB
d/ Xét \(\Delta ABD\)
JA=JB; IA=ID => IJ là đường trung bình của \(\Delta ABD\) => IJ//BC
\(\Rightarrow IJ=\frac{DB}{2}\)
Ta có DB=DC (Trong tg cân đường cao từ đỉnh đồng thời là đường trung tuyến)\(\Rightarrow DB=\frac{BC}{2}\)
\(\Rightarrow IJ=\frac{DB}{2}=\frac{\frac{BC}{2}}{2}=\frac{1}{4}BC\)
e/
Xét HCN AEBD có
\(\Rightarrow JE=JD=\frac{ED}{2}\) (trong HCN hai đường chéo cắt nhau tại trung điểm mỗi đường)
Xét tg vuông EKD có
\(JE=JD\Rightarrow IK=\frac{ED}{2}=JE=JD\) (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)
\(\Rightarrow\Delta AJK;\Delta BJK\) cân tại J \(\Rightarrow\widehat{BAK}=\widehat{AKJ};\widehat{ABK}=\widehat{BKJ}\) (góc ở đáy tg cân) (1)
Xét \(\Delta AKB\)
\(\widehat{BAK}+\widehat{ABK}+\widehat{AKB}=180^o\) (tổng các góc trong của tg = 180 độ)
\(\Rightarrow\widehat{BAK}+\widehat{ABK}+\widehat{AKJ}+\widehat{BKJ}=180^o\)(2)
Từ (1) và (2) \(\Rightarrow2\left(\widehat{AKJ}+\widehat{BKJ}\right)=180^o\Rightarrow\widehat{AKJ}+\widehat{BKJ}=\widehat{AKB}=90^o\)
f/
Xét tg vuông IBD và tg vuông ICD có
ID chung
DB=DC (cmt)
\(\Rightarrow\Delta IBD=\Delta ICD\) (Hai tg vuông có 2 cạnh góc vuông bằng nhau) \(\Rightarrow\widehat{IBD}=\widehat{ICD}\) (1)
Xét tg vuông IDK
\(\widehat{IDK}+\widehat{CID}=90^o\)
Xét tg vuông ICD
\(\widehat{ICD}+\widehat{CID}=90^o\)
\(\Rightarrow\widehat{IDK}=\widehat{ICD}\) (cùng phụ với \(\widehat{CID}\) (2)
Từ (1) và (2) \(\Rightarrow\widehat{IDK}=\widehat{IBD}\)
☭☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭ ☭
30 người → 8 giờ
40 người→ ? giờ
lời giải thì bn tự đặt nha! Bây giờ bn lấy 30 nhân cho 8 rồi chia cho 40 nha bn. Chúc bn thành công
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
BD=CE
\(\widehat{ABD}=\widehat{ACE}\)
Do đó: ΔABD=ΔACE
Suy ra: AB=AC
hay ΔABC cân tại A
b: XétΔABC có
AD là đường cao
CH là đường cao
AD cắt CH tại D
Do đó: D là trực tâm của ΔABC
=>BD vuông góc với AC