K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 7 2020

\(K=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{6\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

\(K\le\frac{1}{2}\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}+1}\le\frac{1}{2}\)

\(\Leftrightarrow2\sqrt{x}-2\le\sqrt{x}+1\) (do \(\sqrt{x}+1>0;\forall x\in D\))

\(\Leftrightarrow\sqrt{x}\le3\Rightarrow x\le9\)

\(\Rightarrow x=\left\{0;2;3;4;5;6;7;8;9\right\}\Rightarrow\sum x=44\)

NV
17 tháng 7 2020

\(K=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{6\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

\(K\le\frac{1}{2}\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}+1}\le\frac{1}{2}\Leftrightarrow2\sqrt{x}-2\le\sqrt{x}+1\) (do \(\sqrt{x}+1>0;\forall x\))

\(\Leftrightarrow\sqrt{x}\le3\Rightarrow x\le9\)

\(\Rightarrow x=\left\{2;3;4;5;6;7;8;9\right\}\Rightarrow T=44\)

NV
12 tháng 7 2020

\(K=\left(\frac{a}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{\sqrt{a}-1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)

\(=\left(\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)

\(=\left(\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}\right).\left(\sqrt{a}-1\right)\)

\(=\frac{a-1}{\sqrt{a}}\Rightarrow\left\{{}\begin{matrix}m=1\\n=-1\end{matrix}\right.\Rightarrow m^2+n^2=2\)

\(A=\frac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{\sqrt{x}}{\sqrt{x}-2}\Rightarrow\left\{{}\begin{matrix}m=0\\n=-2\end{matrix}\right.\Rightarrow m-n=2\)

12 tháng 7 2020

Cảm ơn bạn nha ;)

13 tháng 5 2020
https://i.imgur.com/bZxoN3v.jpg
AH
Akai Haruma
Giáo viên
18 tháng 5 2020

Lời giải:
\(T=\frac{\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+1)}+\frac{\sqrt{x}-2}{x+\sqrt{x}+1}+\frac{3}{x\sqrt{x}-1}=\frac{1}{\sqrt{x}-1}+\frac{\sqrt{x}-2}{x+\sqrt{x}+1}+\frac{3}{x\sqrt{x}-1}\)

\(=\frac{x+\sqrt{x}+1+(\sqrt{x}-2)(\sqrt{x}-1)}{(\sqrt{x}-1)(x+\sqrt{x}+1)}+\frac{3}{(\sqrt{x}-1)(x+\sqrt{x}+1)}=\frac{2(x-\sqrt{x}+3)}{x\sqrt{x}-1}\)

Để $T=\frac{4}{7}\Leftrightarrow \frac{x-\sqrt{x}+3}{x\sqrt{x}-1}=\frac{2}{7}$

$\Leftrightarrow 2x\sqrt{x}-7x+7\sqrt{x}-23=0$

PT này giải ra được nghiệm nhưng cực xấu. Bạn xem lại đề xem có nhầm dấu má ở đâu không.

13 tháng 3 2020
https://i.imgur.com/wL7Xpum.jpg
NV
15 tháng 5 2019

\(B=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\)

\(=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\frac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)

b/ \(A.B=m\Leftrightarrow\frac{\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}}{\left(x+\sqrt{x}+1\right)}=m\Leftrightarrow\frac{\sqrt{x}}{\sqrt{x}-1}=m\)

\(\Leftrightarrow m\sqrt{x}-m-\sqrt{x}=0\Leftrightarrow\sqrt{x}\left(m-1\right)=m\)

- Với \(m=1\) pt vô nghiệm

- Với \(m\ne1\Rightarrow\sqrt{x}=\frac{m}{m-1}\)

\(\sqrt{x}\ge0\Leftrightarrow\frac{m}{m-1}\ge0\Rightarrow\left[{}\begin{matrix}m\le0\\m>1\end{matrix}\right.\)

Ta có: \(B=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)+5\left(\sqrt{x}+1\right)+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{x+2\sqrt{x}-3+5\sqrt{x}+5+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+6}{\sqrt{x}-1}\)

do đó \(P=\frac{\sqrt{x}-1}{\sqrt{x}+1}.\frac{\sqrt{x}-6}{\sqrt{x}-1}=\frac{\sqrt{x}-6}{\sqrt{x}+1}=1-\frac{7}{\sqrt{x}+1}\)

Vì \(x\ge0\Rightarrow0< \frac{7}{\sqrt{x}+1}\le7\)

Để P nguyên thì \(\frac{7}{\sqrt{x}+1}\in Z\)

do đó \(\frac{7}{\sqrt{x}+1}\in\left\{1,2,3,4,5,6,7\right\}\)

Đến đây xét từng TH là  ra

8 tháng 3 2020

rút gọn B ta có B=\(\frac{\sqrt{x}+6}{\sqrt{x}-1}\)\(\Rightarrow\)\(AB=\frac{\sqrt{x}+6}{\sqrt{x}+1}\in Z\)

=\(1+\frac{5}{\sqrt{x}+1}\)

Vì 1\(\in Z\) nên để P thuộc Z thì \(\frac{5}{\sqrt{x}+1}\in Z\)

\(\Rightarrow\left(\sqrt{x}+1\right)\inƯ\left(5\right)=\pm1;\pm5\)

Đến đây thì ez rồi