K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2021

Gọi chiều dài mảnh đất là x (x<8; x>y)

Gọi chiều rộng mảnh đất là y (y>3)

Nếu giảm chiều rộng 3m và tăng chiều dài 8m thì diện tích giảm đi 54m2 nên ta có PT:   

xy - (x+8)(y+3) =54

⇔xy-xy-3x+8y+24=54

⇔-3x+8y=30 (1)

-Nếu tăng chiều rộng 2m giảm chiều dài 4m thì diện tích mảnh vườn tăng thêm 32m2 nên ta có PT:

(x-4)(y+2)-xy=32

⇔xy+2x-4y-8-xy=32

⇔2x-4y=40 (2)

Từ (1) và (2) ⇒HPT: \(\left\{{}\begin{matrix}-3x+8y=30\\2x-4y=40\end{matrix}\right.\)\(\left\{{}\begin{matrix}x=110\\y=45\end{matrix}\right.\)

Vậy chiều dài và chiều rộng mảnh đất lần lượt là 110m và 45m

 

1 tháng 2 2021

Gọi chiều rộng và chiều dài ban đầu của mảnh vườn đó lần lượt là x và y (m) 

( y > x >0)

=> Diện tích ban đầu của mảnh vườn đó là: xy (m2)

Nếu giảm chiều rộng đi 3 m và tăng chiều dài thêm 8 m

=> Chiều rộng mới là: x - 3 (m); Chiều dài mới là: y + 8 (m)

=> Diện tích mới của mảnh vườn đó là: (x - 3)(y + 8) = xy + 8x - 3y - 24 (m2)

và diện tích mảnh vườn đó giảm 54 m2 so với diện tích ban đầu nên ta có phương trình:  xy + 8x - 3y - 24 + 54 = xy

<=> \(\left\{{}\begin{matrix}\text{8x - 3y = -30}\\-4x+2y=40\end{matrix}\right.< =>\left\{{}\begin{matrix}x=15\\y=50\end{matrix}\right.\left(TM\right)}}\) (1)

Nếu tăng chiều rộng thêm 2m và giảm chiều dài đi 4 m

=> Chiều rộng mới là:  x + 2 (m); Chiều dài mới là: y - 4 (m)

=> Diện tích mới của mảnh vườn đó là: (x + 2)(y - 4) = xy - 4x +2y - 8 (m2)

và diện tích mảnh vườn đó tăng 32 m2 so với diện tích ban đầu nên ta có phương trình:   xy - 4x +2y - 8 - 32 = xy

<=> - 4x +2y = 40 (2)

Từ (1) và (2) ta có hệ phương trình sau:

 \(\left\{{}\begin{matrix}\text{8x - 3y = -30}\\-4x+2y=40\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=15\\y=50\end{matrix}\right.\left(tmđk\right)\)

Vậy chiều rộng và chiều dài ban đầu của mảnh vườn đó lần lượt là  15 và 50 (m)

2:

Gọi chiều dài, chiều rộng lần lượt là a,b

Theo đề, ta có:

a+b=50 và (a-4)(b+3)=ab-2

=>a+b=50 và 3a-4b=10

=>a=30 và b=20

S=30*20=600m2

29 tháng 1 2021

Gọi chiều dài, chiều rộng mảnh vườn là x và y ( m ; x > y ; x > 3 ; y > 2 )

Diện tích ban đầu = xy ( m2 )

Tăng chiều dài 1m và giảm chiều rộng 2m thì diện tích giảm 20m2 so với quy định

=> ( x + 1 )( y - 2 ) = xy - 20

<=> xy - 2x + y - 2 - xy + 20 = 0

<=> -2x + y = -18 (1)

Giảm chiều dài 3m và tăng chiều rộng 4m thì diện tích tăng 12m2 so với dự định

=> ( x - 3 )( y + 4 ) = xy + 12

<=> xy + 4x - 3y - 12 - xy - 12 = 0

<=> 4x - 3y = 24 (2)

Từ (1) và (2) ta có hệ phương trình : \(\hept{\begin{cases}-2x+y=-18\\4x-3y=24\end{cases}}\)

Giải hệ ta thu được x = 15 và y = 12

Hai nghiệm trên thỏa mãn ĐKXĐ

Vậy diện tích mảnh vườn ban đầu = xy = 15.12 = 180m2

29 tháng 1 2021

Gọi x(m) là chiều rộng của mảnh vườn ban đầu

      y(m) là chiều dài của mảnh vườn ban đầu

=> Diện tích ban đầu của mảnh vườn là x.y (m)

Ta có: Nếu tăng chiều dài thêm 1m và giảm chiều rộng 2m thì mảnh vườn giảm 20m ² so với dự định

=> (y+1).(x-2)=xy-20

<=> xy -2y+x -2= xy-20

<=> x-2y=-18 (1)

Nếu giảm chiều dài 3m và tăng chiều rộng thêm 4m thì diện tích mảnh vườn tăng 12m ² so với dự định .=> (y-3).(x+4)=xy+12

<=> xy +4y-3x-12=xy+12

<=> -3x+4y=24 (2)

Từ (1);(2) ta giải hệ pt được x=12; y=15

Diện tích mảnh vườn bác An dự định ban đầu là x.y=12.15=180 m²

14 tháng 5 2021

gọi AB,BC thứ tự là chiều dài và chiều rộng của hcn

diện tích hcn là:AB.BC

vì sau khi tăng chiều dài 5m, chiều rộng 3m thì S tăng thêm 255 m2 nên ta có phương trình

(AB+5).(BC+3)-AB.BC=255

<=>AB.BC+3.AB+5.BC+15-AB.BC=255

<=>3.AB+5.BC=240(1)

mà AB+BC=62=>3.AB+3.BC=186(2)

trừ cả 2 vế của (1) và (2) ta được

3.AB+5.BC-3.AB-3.BC=240-186

<=>2.BC=54<=>BC=27(m)

=>AB=35(m)

Vậy AB=35m,BC=27m

26 tháng 6 2021

undefined

14 tháng 5 2021

Cách lập phương trình:

Gọi x (m) là chiều dài của khu vườn ) \(\left(31< x< 62\right)\)

=> 62 - x (m) là chiều rộng của khu vườn

Diện tích khu vườn ban đầu là: \(x\left(62-x\right)\left(m^2\right)\)

Vì nếu tăng chiều dài lên 5m , chiều rộng lên 3m thì diện tích mảnh vườn tăng thêm \(255m^2\)

\(\Rightarrow\left(x+5\right)\left(65-x\right)=x\left(62-x\right)+255\)

\(\Leftrightarrow-x^2+60x+325=-x^2+62x+255\)

\(\Leftrightarrow2x=70\Rightarrow x=35\left(tm\right)\)

=> Chiều dài khu vườn ban đầu là 35m

=> Chiều rộng khu vườn ban đầu là 62 - 35 = 27m

Vậy chiều dài , chiều rộng ban đầu của mảnh vườn lần lượt là 35m , 27m

14 tháng 5 2021

Gọi chiều dài mảnh vườn ban đầu là x(m, 0<x<62)

       chiều rộng mảnh vườn ban đàu là y(m, 0<y<62,y<x)

 ⇒ Ta có hệ phương trình: x+y=62                          ⇔  x=35

                                           (x+5)(y+3)-xy=255              y=27

Vậy chiều dài mảnh vườn ban đầu là 35m

       chiều rộng mảnh vườn ban đầu là 27m

Gọi chiều dài và chiều rộng lần lượt là \(x,y\left(50>x>y\right)\)\(\left(m\right)\)

Tổng chiều dài và rộng là \(x+y=\dfrac{100}{2}=50m\left(1\right)\)

Diện tích ban đầu: \(S=x\cdot y\left(m^2\right)\)

Nếu giảm dài 3m và tăng rộng 4m thì S mới tăng \(48m^2\)

\(\Rightarrow\left(x-3\right)\cdot\left(y+4\right)=x\cdot y+48\)

\(\Rightarrow4x-3y=60\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\left\{{}\begin{matrix}x=30\\y=20\end{matrix}\right.\)

\(S_{bđ}=30\cdot20=600m^2\)

7 tháng 2 2022

Gọi chiều dài chiều rộng lần lượt là a ; b ( a ; b > 0 ) 

Theo bài ra ta có hệ 

\(\left\{{}\begin{matrix}2\left(a+b\right)=100\\\left(b+4\right)\left(a-3\right)=ab+48\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=50\\-3b+4a=60\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=30\\b=20\end{matrix}\right.\)(tm)

Diện tích ban đầu là ab = 600 m2

4 tháng 4 2022

nhớ tick cho mình nha

21 tháng 11 2021

Gọi cd ban đầu là a(m;a>0)

Cr đầu: \(a-5\left(m\right)\)

Cd sau: \(a-5\left(m\right)\)

Cr sau: \(a-5-4=a-9\left(m\right)\)

Theo đề ta có \(S_{đầu}-S_{sau}=a\left(a-5\right)-\left(a-5\right)\left(a-9\right)=180\)

\(\Leftrightarrow\left(a-5\right)\left(a-a+9\right)=180\\ \Leftrightarrow9\left(a-5\right)=180\\ \Leftrightarrow a-5=20\\ \Leftrightarrow a=25\)

Vậy chu vi ban đầu là \(\left[a+\left(a-5\right)\right]\cdot2=90\left(m\right)\)