Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề là: \(2sin^22x-3cos2x+6sin^2x-9=0\) đúng không nhỉ?
\(\Leftrightarrow2\left(1-cos^22x\right)-3cos2x+3\left(1-cos2x\right)-9=0\)
\(\Leftrightarrow-2cos^22x-6cos2x-4=0\)
\(\Leftrightarrow cos^22x+3cos2x+2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=-1\\cos2x=-2\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow...\)
ĐKXĐ: \(sinx\ne\pm1\)
\(\dfrac{3cos2x-2sinx+5}{2\left(1-sin^2x\right)}=0\)
\(\Leftrightarrow3\left(1-2sin^2x\right)-2sinx+5=0\)
\(\Leftrightarrow-6sin^2x-2sinx+8=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\left(loại\right)\\sinx=-\dfrac{4}{3}< -1\left(loại\right)\end{matrix}\right.\)
Vậy pt vô nghiệm
Mik chưa học lớp 11 nên ko trả lời đc sorry nha !! mik mới học lớp 6 thui
a/ \(\left(2sinx-cosx\right)\left(1+cosx\right)=sin^2x\)
\(\Leftrightarrow\left(2sinx-cosx\right)\left(1+cosx\right)=\dfrac{1-cos2x}{2}\)
\(\Leftrightarrow\left(2sinx-cosx\right)\left(1+cosx\right)=\dfrac{1-2cos^2x+1}{2}=\dfrac{2-2cos^2x}{2}=1-cos^2x\)
\(\Leftrightarrow\left(2sinx-cosx\right)\left(1+cosx\right)=\left(1-cosx\right)\left(1+cosx\right)\Leftrightarrow\left(2sinx-cosx\right)\left(1+cosx\right)-\left(1-cosx\right)\left(1+cosx\right)=0\)\(\Leftrightarrow\left(1+cosx\right)\left(2sinx-cosx-1+cosx\right)=0\Leftrightarrow\left(1+cosx\right)\left(2sinx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}1+cosx=0\\2sinx-1=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}cosx=-1\\sinx=\dfrac{1}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=180^o\\x=30^o\end{matrix}\right.\)
a) Đáp án: \(\left[{}\begin{matrix}cosx=-1\\sinx=\dfrac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\pi+k2\pi\\x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)(\(k\in Z\))
Vậy...
b) \(3sin^2x+7cos2x-3=0\)
\(\Leftrightarrow3sin^2x+7\left(1-2sin^2x\right)-3=0\)
\(\Leftrightarrow11.sin^2x=4\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{2\sqrt{11}}{11}\\sinx=\dfrac{-2\sqrt{11}}{11}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=arc.sin\dfrac{2\sqrt{11}}{11}+k2\pi\\x=\pi-arc.sin\dfrac{2\sqrt{11}}{11}+k2\pi\\x=arc.sin\dfrac{-2\sqrt{11}}{11}+k2\pi\\x=\pi-arc.sin\dfrac{-2\sqrt{11}}{11}+k2\pi\end{matrix}\right.\) (\(k\in Z\)) (Dị quá,câu này e ko biết đ/a đúng hay sai đâu)
Vậy...
c)\(\dfrac{4.sin^2x+6.sin^2x-9-3.cos2x}{cosx}=0\) (đk: \(x\ne\dfrac{\pi}{2}+k\pi\),\(k\in Z\))
\(\Rightarrow10sin^2x-9-3\left(1-2.sin^2x\right)=0\)
\(\Leftrightarrow sin^2x=\dfrac{3}{4}\)\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{\sqrt{3}}{2}\\sinx=-\dfrac{\sqrt{3}}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k2\pi\\x=\dfrac{2\pi}{3}+k2\pi\\x=\dfrac{-\pi}{3}+k2\pi\\x=\dfrac{4\pi}{3}+k2\pi\end{matrix}\right.\)(\(k\in Z\)) (Thỏa mãn đk)
Vậy...
3cos2x - 5 cos x + 2 = 0
Đặt cos x = t với điều kiện -1 ≤ t ≤ 1 (*),
ta được phương trình bậc hai theo t:
3t2 - 5t + 2 = 0(1)
Δ = (-5)2 - 4.3.2 = 1
Phương trình (1)có hai nghiệm là:
Ta có:
cosx = 1 ⇔ cosx = cos0
⇔ x = k2π, k ∈ Z
cosx = 2/3 ⇔ x = ± arccos 2/3 + k2π, k ∈ Z
\(\left(2cosx+1\right)\left(3cos2x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2cosx+1=0\\3cos2x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=-\dfrac{1}{2}\\cos2x=\dfrac{4}{3}>1\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow x=\pm\dfrac{2\pi}{3}+k2\pi\)