Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(g,ĐK:x\ge0\\ PT\Leftrightarrow10\sqrt{x}+8\sqrt{x}-11\sqrt{x}=21\\ \Leftrightarrow\sqrt{x}=3\Leftrightarrow x=9\left(tm\right)\\ h,ĐK:x\ge0\\ PT\Leftrightarrow6\sqrt{3x}+2\sqrt{3x}-3\sqrt{3x}=15\\ \Leftrightarrow\sqrt{3x}=5\Leftrightarrow3x=25\Leftrightarrow x=\dfrac{25}{3}\left(tm\right)\\ i,ĐK:x\ge0\\ PT\Leftrightarrow12\sqrt{x}-21-2\sqrt{x}+10=6\sqrt{x}-12\\ \Leftrightarrow4\sqrt{x}=-1\Leftrightarrow\sqrt{x}=-\dfrac{1}{4}\Leftrightarrow x\in\varnothing\\ j,ĐK:x\ge2\\ PT\Leftrightarrow6\sqrt{x-2}-15\cdot\dfrac{1}{5}\sqrt{x-2}=20+4\sqrt{x-2}\\ \Leftrightarrow\sqrt{x-2}=-20\Leftrightarrow x\in\varnothing\)
\(k,ĐK:x\ge3\\ PT\Leftrightarrow6\sqrt{x-3}-\dfrac{1}{5}\cdot5\sqrt{x-3}-\dfrac{1}{7}\cdot7\sqrt{x-3}=20\\ \Leftrightarrow4\sqrt{x-3}=20\Leftrightarrow\sqrt{x-3}=5\\ \Leftrightarrow x-3=25\Leftrightarrow x=28\left(tm\right)\\ l,ĐK:x\ge5\\ PT\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\dfrac{1}{3}\cdot3\sqrt{x-5}=4\\ \Leftrightarrow2\sqrt{x-5}=4\Leftrightarrow\sqrt{x-5}=2\\ \Leftrightarrow x-5=4\Leftrightarrow x=9\left(tm\right)\)
a: \(P=\dfrac{\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{x-4}{4}=\dfrac{\sqrt{x}}{2}\)
a: Ta có: BC⊥BA tại B
nên BC là tiếp tuyến của (A;AB)
b: Xét (A) có
CB là tiếp tuyến
CD là tiếp tuyến
Do đó: CB=CD
hay C nằm trên đường trung trực của BD(1)
Ta có: AB=AD
nên A nằm trên đường trung trực của BD(2)
Từ (1) và (2) suy ra AC là đường trung trực của BD
hay AC\(\perp\)BD
Giúp mình luôn câu c d được không:((( sắp hết h rồi mà không bt làm
a: Xét ΔSBM và ΔSNB có
\(\widehat{SBM}=\widehat{SNB}\)
\(\widehat{BSM}\) chung
Do đó: ΔSBM\(\sim\)ΔSNB
Suy ra: SB/SN=SM/SB
hay \(SB^2=SM\cdot SN\)
b: Xét (O) có
SA là tiếp tuyến
SB là tiếp tuyến
Do đó: SA=SB
mà OA=OB
nên SO là đường trung trực của AB
=>SO⊥AB
Xét ΔOBS vuông tại B có BH là đường cao
nên \(SH\cdot SO=SB^2=SM\cdot SN\)
\(\widehat{C}=30^0\)
AB=10cm
\(AC=10\sqrt{3}\left(cm\right)\)
\(1,=\left|\sqrt{7}-4\right|-2\sqrt{7}=4-\sqrt{7}-2\sqrt{7}=4-3\sqrt{7}\\ 2,\\ a,P=\dfrac{x+2\sqrt{x}+x-2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{2\sqrt{x}}\\ P=\dfrac{2x}{2\sqrt{x}}=\sqrt{x}\\ b,P>3\Leftrightarrow\sqrt{x}>3\Leftrightarrow x>9\)
4.
\(\sin\widehat{B}=\sin57^0=\dfrac{AC}{BC}\approx0,8\Leftrightarrow AC\approx0,8\cdot4,5=3,6\\ \Rightarrow AB=\sqrt{BC^2-AC^2}=2,7\left(cm\right)\left(pytago\right)\)
5.
Áp dụng HTL: \(AB^2=BH\cdot BC\Rightarrow BC=\dfrac{AB^2}{BH}=\dfrac{25}{6}\)
Áp dụng PTG: \(AC=\sqrt{BC^2-AB^2}=\dfrac{10}{3}\)
\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{4}{5}\approx\sin53^0\Leftrightarrow\widehat{B}\approx53^0\)
Vì tg ABC vg tại A nên \(\widehat{C}=90^0-\widehat{B}=37^0\)
a) \(D=4\sqrt{\dfrac{1}{3}}+5\sqrt{12}-6\sqrt{27}\)
\(=\dfrac{4}{9}\sqrt{3}+5.2\sqrt{3}-6.3\sqrt{3}\)
\(=\dfrac{4}{9}\sqrt{3}+10\sqrt{3}-18\sqrt{3}\)
\(=-\dfrac{68}{9}\sqrt{3}\)
b) \(E=\dfrac{2}{\sqrt{3}-1}-\sqrt{4-2\sqrt{3}}\)
\(=\dfrac{2\left(\sqrt{3}+1\right)}{2}-\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.1+1^2}\)
\(=\sqrt{3}+1-\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)\)
\(=\sqrt{3}+1-\sqrt{3}+1=2\)
c) \(F=\dfrac{\sqrt{15}-\sqrt{10}}{\sqrt{3}-\sqrt{2}}+\dfrac{3}{2-\sqrt{5}}\)
\(=\dfrac{\sqrt{5}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}+\dfrac{3\left(2+\sqrt{5}\right)}{-1}\)
\(=\sqrt{5}-6-3\sqrt{5}=-2\sqrt{5}-6\)
a: AI=8cm
=>AB=16cm
b: Xét ΔMAO và ΔMBO có
OA=OB
\(\widehat{MOA}=\widehat{MOB}\)
OM chung
Do đó: ΔMAO=ΔMBO
Suy ra: \(\widehat{MAO}=\widehat{MBO}=90^0\)
hay MB là tiếp tuyến của (O)