Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{#TNam}\)
`5,A`
Gọi các cạnh của Tam giác `ABC` lần lượt là `x,y,z (x,y,z \ne 0)`
`3` góc của tam giác lần lượt tỉ lệ với `2:3:4`
Nghĩa là: `x/2=y/3=z/4`
Tổng số đo `3` góc trong `1` tam giác là `180^0`
`-> x+y+z=180`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/2=y/3=z/4=`\(\dfrac{x+y+z}{2+3+4}=\dfrac{180}{9}=20\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=20\\\dfrac{y}{3}=20\\\dfrac{z}{4}=20\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=20\cdot2=40\\y=20\cdot3=60\\z=20\cdot4=80\end{matrix}\right.\)
Vậy, độ dài các cạnh của Tam giác `ABC` lần lượt là `40^0, 60^0, 80^0`.
`6,B`
Gọi số người thợ của `3` nhóm lần lượt là `x,y,z (x,y,z \ne 0)`
Vì năng suất làm việc của các người thợ như nhau `->` số thợ và số ngày là `2` đại lượng tỉ lệ nghịch
`-> 40x=60y=50z` hay \(\dfrac{x}{\dfrac{1}{40}}=\dfrac{y}{\dfrac{1}{60}}=\dfrac{z}{\dfrac{1}{50}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{\dfrac{1}{40}}=\dfrac{y}{\dfrac{1}{60}}=\dfrac{z}{\dfrac{1}{50}}=\dfrac{x-z}{\dfrac{1}{40}-\dfrac{1}{50}}=\dfrac{3}{\dfrac{1}{200}}=600\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{\dfrac{1}{40}}=600\\\dfrac{y}{\dfrac{1}{60}}=600\\\dfrac{z}{\dfrac{1}{50}}=600\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=600\cdot\dfrac{1}{40}=15\\y=600\cdot\dfrac{1}{60}=10\\z=600\cdot\dfrac{1}{50}=12\end{matrix}\right.\)
Vậy, số thợ của nhóm `1,2,3` lần lượt là `15,10,12`.
Xét tam giác ABD và tam giác ACDcó AB+BD>AD vàAC+CD>AD(BĐT tam giác ABD và ACD)
Cộng 2 vế lại với nhau ta được:
AB+AC+BD+CD>2AD
=>AB+AC+BC>2AD
Mà AB+AC+BC là chu vi của tam giác ABC
=>1/2(AB+AC+BC)>AD
Vậy nửa chu vi của tam giác ABC>AD
14: \(=\dfrac{1}{9}+\dfrac{10}{9}+2:\dfrac{9}{7}=\dfrac{11}{9}+\dfrac{14}{9}=\dfrac{25}{9}\)
15: \(=\dfrac{3^4\cdot3^3}{3^7}\cdot2018=2018\)
a: \(\widehat{B}=\dfrac{180^0-80^0}{2}=50^0\)
b: Chiều dài là \(\sqrt{15^2-9^2}=12\left(dm\right)\)
\(\dfrac{\sqrt{5^2}-\sqrt{19^2}}{\sqrt{8^2}-\sqrt{22^2}}=\dfrac{5-19}{8-22}=\dfrac{-14}{-14}=1\)
N=7.(2007^2009-2013^1999)/10 (1)
{Để chứng minh N nguyên thì cần c/m:2007^2009-2013^1999 chia hết cho 10}
Ta có:
*2007^2009
=2007.(2007^4)^502
=2007.(...1)^502
=2007.(...1)=(...7)
*2013^1999
=2013^3.(2013^4)^499
=(...7).(...1)^499
=(...7).(...1)=(...7)
=>2007^2009-2013^1999
=(..7)-(...7)=(...0)
nên chia hết cho 10 (2)
Từ (1),(2)=>N thuộc Z và N là hợp số vì N chia hết cho 7
Theo đề bài, ta có:
\(\frac{2}{3}x^2-2=\frac{2}{3}\)
\(\frac{2}{3}x^2=\frac{2}{3}+2\)
\(\frac{2}{3}x^2=\frac{8}{3}\)
\(x^2=\frac{8}{3}\div\frac{2}{3}\)
\(x^2=4\)
\(x=\text{±}2\)
Chọn A
Đáp án A nha bạn