K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2021

f: Ta có: \(\sqrt{2-x}=\sqrt{x^2-2x+4}\)

\(\Leftrightarrow x^2-2x+4=2-x\)

\(\Leftrightarrow x^2-x+2=0\)

\(\Leftrightarrow x\in\varnothing\)

AH
Akai Haruma
Giáo viên
30 tháng 10 2021

Bài 1:

Áp dụng HTL trong tam giác vuông:
$AH^2=BH.CH$

$\Leftrightarrow x^2=4.9=36$

$\Rightarrow x=6$ (do $x>0$)

AH
Akai Haruma
Giáo viên
30 tháng 10 2021

Bài 2:

Áp dụng định lý Pitago:

$BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10$ (cm)

$\sin B=\frac{AC}{BC}=\frac{6}{10}=\frac{3}{5}$

$\Rightarrow \widehat{B}=36,87^0$

$\widehat{C}=90^0-\widehat{B}=90^0-36,87^0=53,13^0$

5 tháng 7 2021

a) (d) cắt trục hoành tại điểm có hoành độ bằng 2

\(\Rightarrow\) tọa độ điểm đó là \(\left(2;0\right)\)

\(\Rightarrow0=2a-3\Rightarrow a=\dfrac{3}{2}\Rightarrow\left(d\right):y=\dfrac{3}{2}x-3\)

b) Vì (d) song song với đồ thị của hàm \(y=2x+1\)

\(\Rightarrow\left\{{}\begin{matrix}a=2\\-3\ne1\end{matrix}\right.\Rightarrow a=2\Rightarrow\left(d\right):y=2x-3\)

c) Gọi A là giao điểm của (d) và (d') 

\(\Rightarrow x_A=1\Rightarrow y_A=2+3=5\Rightarrow A\left(1;5\right)\) 

\(\Rightarrow5=a-3\Rightarrow a=8\Rightarrow\left(d\right):y=8x-3\)

5 tháng 7 2021

Không đăng lặp lại nhiều lần nhé!

a) Thay a=3 vào (d), ta được:

y=3x+b

Vì (d): y=3x+b cắt trục hoành tại điểm có hoành độ bằng 2 nên 

Thay x=2 và y=0 vào (d), ta được:

\(3\cdot2+b=0\)

\(\Leftrightarrow b=-6\)

Vậy: (d): y=3x-6

b) Thay a=2 vào (d), ta được:

y=2x+b

Thay x=1 và y=6 vào (d), ta được:

\(b+2\cdot1=6\)

hay b=4

Vậy: (d): y=2x+4

16 tháng 12 2021

\(C=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)-\sqrt{x}\left(\sqrt{x}+2\right)+6\sqrt{x}}{x-4}.\left(x-4\right)=2\sqrt{x}\)

14 tháng 12 2021

\(1,ĐK:x\ge2\\ PT\Leftrightarrow\sqrt{3x-6}+x-2-\left(\sqrt{2x-3}-1\right)=0\\ \Leftrightarrow\dfrac{3\left(x-2\right)}{\sqrt{3x-6}}+\left(x-2\right)-\dfrac{2\left(x-2\right)}{\sqrt{2x-3}+1}=0\\ \Leftrightarrow\left(x-2\right)\left(\dfrac{3}{\sqrt{3x-6}}-\dfrac{2}{\sqrt{2x-3}+1}+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\\dfrac{3}{\sqrt{3x-6}}-\dfrac{2}{\sqrt{2x-3}+1}+1=0\left(1\right)\end{matrix}\right.\)

Với \(x>2\Leftrightarrow-\dfrac{2}{\sqrt{2x-3}+1}>-\dfrac{2}{1+1}=-1\left(3x-6\ne0\right)\)

\(\Leftrightarrow\left(1\right)>0-1+1=0\left(vn\right)\)

Vậy \(x=2\)

14 tháng 12 2021

\(2,ĐK:x\ge-1\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\\\sqrt{x^2-x+1}=b\end{matrix}\right.\left(a,b\ge0\right)\Leftrightarrow a^2+b^2=x^2+2\)

\(PT\Leftrightarrow2a^2+2b^2-5ab=0\\ \Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=2b\\b=2a\end{matrix}\right.\)

Với \(a=2b\Leftrightarrow x+1=4x^2-4x+4\left(vn\right)\)

Với \(b=2a\Leftrightarrow4x+4=x^2-x+1\Leftrightarrow x^2-5x-3=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5+\sqrt{37}}{2}\left(tm\right)\\x=\dfrac{5-\sqrt{37}}{2}\left(tm\right)\end{matrix}\right.\)

Vậy ...

Câu 3:

2: Xét tứ giác OKEH có 

\(\widehat{OKE}=\widehat{OHE}=\widehat{KOH}=90^0\)

Do đó: OKEH là hình chữ nhật

mà đường chéo OE là tia phân giác của \(\widehat{KOH}\)

nên OKEH là hình vuông