Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{15-x}{2000}+\dfrac{14-x}{2001}=\dfrac{13-x}{2002}+\dfrac{12-x}{2003}\)
\(\Leftrightarrow\dfrac{15-x}{2000}+1+\dfrac{14-x}{2001}+1=\dfrac{13-x}{2002}+1+\dfrac{12-x}{2003}+1\)
\(\Leftrightarrow\dfrac{2015-x}{2000}+\dfrac{2015-x}{2001}=\dfrac{2015-x}{2002}+\dfrac{2015-x}{2003}\)
\(\Rightarrow\dfrac{2015-x}{2000}+\dfrac{2015-x}{2001}-\dfrac{2015-x}{2002}-\dfrac{2015-x}{2003}=0\)
\(\Leftrightarrow\left(2015-x\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)
\(\Leftrightarrow2015-x=0\)
<=> x=2015
Vậy phương trình có nghiệm là x=2015
b) \(\dfrac{x-5}{2010}+\dfrac{x-4}{2011}=\dfrac{x-2010}{5}+\dfrac{x-2011}{4}\)
\(\Leftrightarrow\dfrac{x-5}{2010}-1+\dfrac{x-4}{2011}-1=\dfrac{x-2010}{5}-1+\dfrac{x-2011}{4}-1\)
\(\Leftrightarrow\dfrac{x-2015}{2010}+\dfrac{x-2015}{2011}=\dfrac{x-2015}{5}+\dfrac{x-2015}{4}\)
\(\Rightarrow\dfrac{x-2015}{2010}+\dfrac{x-2015}{2011}-\dfrac{x-2015}{5}-\dfrac{x-2015}{4}=0\)
\(\Leftrightarrow\left(x-2015\right)\left(\dfrac{1}{2010}+\dfrac{1}{2011}-\dfrac{1}{5}-\dfrac{1}{4}\right)=0\)
\(\Leftrightarrow x-2015=0\)
=> x=2015
Vậy phương trình có nghiệm x=2015
a: \(\Leftrightarrow\left(\left|x\right|\right)^2-5\left|x\right|-6=0\)
\(\Leftrightarrow\left(\left|x\right|-6\right)\left(\left|x\right|+1\right)=0\)
\(\Leftrightarrow\left|x\right|-6=0\)
=>x=6 hoặc x=-6
b: \(\dfrac{x}{x-2}+\dfrac{5}{\left|x+2\right|}=1\)
Trường hợp 1: x>-2 và x<>2
Pt sẽ là \(\dfrac{x}{x-2}+\dfrac{5}{x+2}=1\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=x\left(x+2\right)+5\left(x-2\right)\)
\(\Leftrightarrow x^2+2x+5x-10=x^2-4\)
=>7x=6
hay x=6/7(nhận)
TRường hợp 2: x<-2
Pt sẽ là \(\dfrac{x}{x-2}-\dfrac{5}{x+2}=1\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=x\left(x+2\right)-5\left(x-2\right)\)
\(\Leftrightarrow x^2+2x-5x+10=x^2-4\)
=>-3x=-14
hay x=14/3(loại)
Lời giải:
Đặt $A=x^{2011}+x^{2010}+....+x+1$
$Ax=x^{2012}+x^{2011}+...+x^2+x$
$\Rightarrow Ax-A=x^{2012}-1$
$\Rightarrow A=\frac{x^{2012}-1}{x-1}$
$B=x^{502}+x^{501}+...+x+1$
$Bx=x^{503}+x^{502}+....+x^2+x$
$\Rightarrow Bx-B=x^{503}-1$
$\Rightarrow B=\frac{x^{503}-1}{x-1}$
Khi đó: $A:B = \frac{x^{2012}-1}{x-1}: \frac{x^{503}-1}{x-1}=\frac{x^{2012}-1}{x^{503}-1}=\frac{(x^{503})^4-1}{x^{503}-1}$
Đặt $x^{503}=a$ thì:
$A:B=\frac{a^4-1}{a-1}=a^3+a^2+a+1$
$\Rightarrow A\vdots B$