Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
b, Áp dụng hệ thức lượng vào trong tam giác vuông AHB
ta có : \(AH^2=AE.AB\left(1\right)\)
ÁP dụng hệ thức lượng vào trong tam giác vuông AHC
Ta có : \(AH^2=AF.AC\left(2\right)\)
Từ (1) , (2) \(\Rightarrow AB.AE=AC.AF\left(đpcm\right)\)
Vì tam giác ABC là tam giác cân nên góc B = góc C = \(\frac{180^o-48^o}{2}=66^o\)
Ta có AB = AC = \(\frac{AH}{sinB}=\frac{13}{sin66^o}\) ( cm )
BC = 2HB = \(2.\frac{AH}{\tan B}=\frac{26}{\tan66^o}\) ( cm )
Suy ra chu vi hình tam giác ABC là : AB + AC + BC = \(\frac{26}{\tan66^o}+\frac{26}{\tan66^o}\) ( cm )
Bạn hiểu chăng ?
Chúc bạn học tốt
\(A=\frac{2\sqrt{x}+x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}×\frac{x+\sqrt{x}+1}{\sqrt{x}+2}\)
\(=\frac{1}{\sqrt{x}+2}\)
A đạt GTLN khi \(2+\sqrt{x}\)đạt GTNN hay x là nhỏ nhất. Vậy A đạt GTLN là \(\frac{1}{2}\)khi x = 0
TA CÓ:
\(\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1+6\sqrt{x-1}+9}=5\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=5\)
\(\Leftrightarrow\sqrt{x-1}-2+\sqrt{x-1}-3=5\Leftrightarrow2\sqrt{x-1}=10\Leftrightarrow\sqrt{x-1}=5\)
\(\Leftrightarrow x-1=25\Leftrightarrow x=26\)
ĐKXĐ: \(x\ge1\)
PT (=) \(\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}+3\right)^2}=5\)
(=) \(\sqrt{x-1}-2+\sqrt{x-1}+3=5\) (=) \(2\sqrt{x-1}=4\)(=) \(\sqrt{x-1}=2\)(=) X = 5 (nhận)
a/ ĐKXĐ : \(x\ge0;x\ne1\)
\(P=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right):\frac{2}{x^2-2x+1}\)
\(=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right):\frac{2}{\left(x-1\right)^2}\)
\(=\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\frac{\left(x-1\right)^2}{2}\)
\(=\frac{x-2\sqrt{x}+\sqrt{x}-2-x+\sqrt{x}-2\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\frac{\left(x-1\right)^2}{2}\)
\(=\frac{-2\sqrt{x}}{\left(x-1\right)\left(\sqrt{x}+1\right)}.\frac{\left(x-1\right)^2}{2}\)
\(=\frac{-2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x-1\right)}{2\left(x-1\right)\left(\sqrt{x}+1\right)}\)
\(=-\sqrt{x}\left(x-1\right)\)
Vậy...
b/ Ta có :
\(P>0\)
\(\Leftrightarrow-\sqrt{x}\left(x-1\right)>0\)
\(\Leftrightarrow\sqrt{x}\left(x-1\right)< 0\)
Mà \(\sqrt{x}\ge0\)
\(\Leftrightarrow x-1< 0\Leftrightarrow x< 1\)
Kết hợp ĐKXĐ
Vậy \(0< x< 1\) thì P > 0
c/ Ta có :
\(x=7-4\sqrt{3}=\left(2-\sqrt{3}\right)^2\) thỏa mãn \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{x}=\left|2-\sqrt{3}\right|=2-\sqrt{3}\)
Thay vào P rồi bạn tự tính ra nhé :>
Bạn vui lòng gõ đề rõ ràng để được hỗ trợ tốt hơn. Chụp thế này nhìn rất khó đọc.