K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2022

\(\dfrac{x-2}{3}=\dfrac{x+1}{4}\)

\(4\left(x-2\right)=3\left(x+1\right)\)

\(4x-8=3x+3\)

\(x=11\)

11 tháng 5 2022

\(4x-8=3x+3\Leftrightarrow x=11\)

8 tháng 4 2017

\(\frac{5.4^{15}.9^8-4.3^{17}.8^9}{5.2^{11}.6^{18}-7.2^{28}.27^6}\)\(=\frac{5.\left(2^2\right)^{15}.\left(3^2\right)^8-\left(2^2\right).3^{17}.\left(2^3\right)^9}{5.2^{11}.\left(2.3\right)^{18}-7.2^{28}.\left(3^3\right)^6}\)\(=\frac{5.2^{30}.3^{16}-2^2.3^{17}.2^{27}}{5.2^{11}.2^{18}.3^{18}-7.2^{28}.3^{18}}\)

                                            \(=\frac{5.2^{30}.3^{16}-2^{29}.3^{17}}{5.2^{29}.3^{18}-7.2^{28}.3^{18}}=\frac{2^{28}.3^{16}.\left(5.2^2-2.3\right)}{2^{28}.3^{16}.\left(5.2.3^2-7.3^2\right)}\)

                                             \(=\frac{5.2^2-2.3}{5.2.3^2-7.3^2}=\frac{5.4-6}{5.2.9-7.9}=\frac{20-6}{90-63}\)

                                               \(=\frac{14}{27}\)

8 tháng 4 2017

\(\frac{5.4^{15}.9^8-4.3^{17}.8^9}{5.2^{11}.6^{18}-7.2^{28}.27^6}=\frac{5.\left(2^2\right)^{15}.\left(3^2\right)^8-2^2.3^{17}.\left(2^3\right)^9}{5.2^{11}.\left(2.3\right)^{18}-7.2^{28}.\left(3^3\right)^6}\)\(=\frac{5.2^{30}.3^{16}-2^2.3^{17}.2^{27}}{5.2^{11}.2^{18}.3^{18}-7.2^{28}.3^{18}}=\frac{5.2^{30}.3^{16}-2^{29}.3^{17}}{5.2^{29}.3^{18}-7.2^{28}.3^{18}}\)\(=\frac{2^{29}.3^{16}.\left(5+2-3\right)}{2^{28}.3^{18}.\left(5+2\right)}\)\(=\frac{2.4}{3^2.7}=\frac{8}{63}\)

30 tháng 7 2017

Đặt \(A=1+3+3^2+3^3+...+3^{2017}\)

    \(3A=3\left(1+3+3^2+3^3+...+3^{2017}\right)\)

           \(=3+3^2+3^3+3^4+...+3^{2018}\)\(3A-A=\left(3+3^2+3^3+3^4+...+3^{2018}\right)-\left(1+3+3^2+3^3+...+3^{2017}\right)\)\(2A=3^{2018}-1\Rightarrow A=\frac{3^{2018}-1}{2}\)

Vậy \(A=\frac{3^{2018}-1}{2}\)

30 tháng 7 2017

gọi bieu thuc tren la A

A= 1+3+3^2+..+3^2017

3A= 3.(1+3+362+..+3^2017)

3A=3+3^2+3^3+...+3^2018

3A - A= (3+ 3^2+3^3+...+3^2018) - (1+3+3^2+...+3^2017)

2A= 3^2018 - 1

=> A= \(\frac{3^{2018}-1}{2}\)

7 tháng 7 2017

Ta có: 5+5\(^2\)+5\(^3\)+5\(^4\)+....+5\(^{60}\)= (5+5\(^2\))+(5\(^3\)+5\(^4\) ) +....+( 5\(^{59}\)+5\(^{60}\))=

= 30+ 5^2.(5+5^2)+...+5^58.(5+5^2)= 30+5^2.30+...+5^58.30= 30.(1+5^2+...+5^58)

Vì 30 \(⋮\)\(\Rightarrow\)30.(1+5^2+...+5^58) \(⋮\)6 hay 5+5\(^2\)+5\(^3\)+5\(^4\)+....+5\(^{60}\)\(⋮\)6

5+5\(^2\)+5\(^3\)+5\(^4\)+....+5\(^{60}\)= (5+5\(^2\)+5\(^3\) ) +(5\(^4\) + 5^5+5^6) +....+( 5^58+5\(^{59}\)+5\(^{60}\))=

= 155+ 5^3.(5+5^2+5^3)+...+5^57.(5+5^2+5^3)= 155+5^3.155+...+5^57.155=155.(1+5^3+...+5^57)

Vì 155 \(⋮\) 31 \(\Rightarrow\) 155.(1+5^3+...+5^57) \(⋮\) 31 hay 5+5\(^2\)+5\(^3\)+5\(^4\)+....+5\(^{60}\)\(⋮\) 31

7 tháng 7 2017

Bạn vào chỗ câu hỏi của bạn Trương NGuyễn Ngọc Mỹ, giải tương tự giống bài của mình nhé

26 tháng 12 2015

(-4)^3+(-4)^2-(-4)^0 = (-64)+(-16)-(-1) = (-80)-(-1)=(-80)+1

(-79)

Tíck Mìnk Nha !!!!!!!!!!

 

18 tháng 9 2015

Cần gì , giúp được giúp cho

3 tháng 11 2021

bạn cần giúp gì,mình giúp cho nè 

\(\text{Gọi số bị chia là b (a E N}\)

Gọi số dư là r ( r < b ; r > 0 ) 

\(\text{+) Ta có: }\)

\(\text{24 = 3b + r }\)

=> r = 24 - 3b    ( 1 ) 

Nếu r > 0 thì   24 - 3b > 0

=> 24 > 3b

=> 8 > b hay b < 8    ( 2 )

Nếu r < b thì 24 - 3b < b

=> 24< 4b

=> 6 < b hay b > 6    ( 3 )

Từ   ( 2 ) ; ( 3), có:  6 < b < 8

Mà b E N => b = 7

Từ 1, có:

r = 24  - 3b

<=>  24 - 3 . 7 

<=> 3

11 tháng 10 2023

ko dư nha