Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = ( 1 - \(\dfrac{1}{2^2}\))(1-\(\dfrac{1}{3^2}\))(1-\(\dfrac{1}{4^2}\))....(1-\(\dfrac{1}{50^2}\))
S = \(\dfrac{2^2-1}{2^2}\).\(\dfrac{3^2-1}{3^2}\).\(\dfrac{4^2-1}{4^2}\)...\(\dfrac{50^2-1}{50^2}\)
Vì em lớp 6 nên phải làm thêm bước này nữa:
Ta có
n2 - 1 = n2 - n + n - 1 = (n2 - n) + (n - 1) = n(n-1) + (n-1) =(n-1)(n+1)
Áp dụng công thức vừa chứng minh trên vào tổng S ta có:
S = \(\dfrac{\left(2-1\right)\left(2+1\right)}{2^2}\).\(\dfrac{\left(3-1\right)\left(3+1\right)}{3^2}\)....\(\dfrac{\left(50-1\right)\left(50+1\right)}{50^2}\)
S = \(\dfrac{1.3}{2^2}\).\(\dfrac{2.4}{3^2}\)......\(\dfrac{49.51}{50^2}\)
S = \(\dfrac{\left(3.4.5.6....49\right)^2.1.2.50.51}{\left(3.4.5.6...49\right)^2.2.2.50.50}\)
S = \(\dfrac{1}{2}\) . \(\dfrac{51}{50}\)
S = \(\dfrac{51}{100}\)
Đặt \(A=1+3+3^2+3^3+...+3^{2017}\)
\(3A=3\left(1+3+3^2+3^3+...+3^{2017}\right)\)
\(=3+3^2+3^3+3^4+...+3^{2018}\)\(3A-A=\left(3+3^2+3^3+3^4+...+3^{2018}\right)-\left(1+3+3^2+3^3+...+3^{2017}\right)\)\(2A=3^{2018}-1\Rightarrow A=\frac{3^{2018}-1}{2}\)
Vậy \(A=\frac{3^{2018}-1}{2}\)
gọi bieu thuc tren la A
A= 1+3+3^2+..+3^2017
3A= 3.(1+3+362+..+3^2017)
3A=3+3^2+3^3+...+3^2018
3A - A= (3+ 3^2+3^3+...+3^2018) - (1+3+3^2+...+3^2017)
2A= 3^2018 - 1
=> A= \(\frac{3^{2018}-1}{2}\)
2 - 4 + 4 - 6 + ... + 98 - 100
= ( 2 - 4 ) + ( 4 - 6 ) + ... + ( 98 - 100 )
= ( -2 ) + ( -2 ) + ... + ( -2 )
= ( -2 ) . 25
= -50
~ Hok tốt ~
(-4)^3+(-4)^2-(-4)^0 = (-64)+(-16)-(-1) = (-80)-(-1)=(-80)+1
(-79)
Tíck Mìnk Nha !!!!!!!!!!