K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2021

a) \(A=\sqrt{6-2\sqrt{5}}=\sqrt{\left(\sqrt{5}-1\right)^2}=\left|\sqrt{5}-1\right|=\sqrt{5}-1\)

b) \(B=\sqrt{4-\sqrt{12}}=\sqrt{\left(\sqrt{3}-1\right)^2}=\left|\sqrt{3}-1\right|=\sqrt{3}-1\)

c) \(C=\sqrt{19-8\sqrt{3}}=\sqrt{\left(4-\sqrt{3}\right)^2}=\left|4-\sqrt{3}\right|=4-\sqrt{3}\)

d) \(D=\sqrt{5-2\sqrt{6}}=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}=\left|\sqrt{3}-\sqrt{2}\right|=\sqrt{3}-\sqrt{2}\)

a) \(A=\sqrt{6-2\sqrt{5}}=\sqrt{5}-1\)

b) \(B=\sqrt{4-\sqrt{12}}=\sqrt{3}-1\)

c) \(C=\sqrt{19-8\sqrt{3}}=4-\sqrt{3}\)

d) \(D=\sqrt{5-2\sqrt{6}}=\sqrt{3}-\sqrt{2}\)

NV
6 tháng 10 2021

Độ dài quãng đường BD:

\(BD=\dfrac{CD}{sin\widehat{CBD}}=\dfrac{10}{sin3^050'}\approx150\left(m\right)=0,15\left(km\right)\)

Thời gian đi hết đoạn AB:

\(t_1=\dfrac{0,4}{4}=0,1\left(h\right)\)

Thời gian đi hết đoạn BD:

\(t_2=\dfrac{0,15}{3}=0,05\left(h\right)\)

Tổng thời gian:

\(t=t_1+t_2=0,15\left(h\right)=9\left(ph\right)\)

21 tháng 11 2016

giả sử n^2+n+2=k^2=> k^2>n^2<==>k>n (1) 
ta có n^2+n-2=k^2-4 
<==>(n-1)(n+2)=(k-2)(k+2) (2) 
@ nếu n=1 , k=2, đúng 
@ nếu n khác 1 
ta có n+2<k+2 (từ (1)) 
==> để (2) xẩy ra thì: n-1>k-2 
mà từ (1) ta có k-1>n-1 
nên: k-1>n-1>k-2 
do k-1 và k-2 hai hai số tự nhiên liên tiếp nên không thể tồn tại số tự nhiên nằm giữa chúng (n-1) 
vậy chỉ có n=1 là nghiệm!

22 tháng 11 2016

thanks nha

28 tháng 7 2021

a) \(\sqrt{4x}+\sqrt{\dfrac{x}{4}}+\dfrac{1}{2}\sqrt{49x}=6\left(x\ge0\right)\)

\(\Rightarrow2\sqrt{x}+\dfrac{1}{2}\sqrt{x}+\dfrac{7}{2}\sqrt{x}=6\Rightarrow6\sqrt{x}=6\Rightarrow\sqrt{x}=1\Rightarrow x=1\)

b) ĐKXĐ: \(x\ge\dfrac{1}{2}\)

 \(\sqrt{18x-9}-0,5\sqrt{2x-1}+\dfrac{1}{2}\sqrt{25\left(2x-1\right)}+\sqrt{49\left(2x-1\right)}=24\)

\(\Rightarrow\sqrt{9\left(2x-1\right)}-0,5\sqrt{2x-1}+\dfrac{5}{2}\sqrt{2x-1}+7\sqrt{2x-1}=24\)

\(\Rightarrow3\sqrt{2x-1}-0,5\sqrt{2x-1}+\dfrac{5}{2}\sqrt{2x-1}+7\sqrt{2x-1}=24\)

\(\Rightarrow12\sqrt{2x-1}=24\Rightarrow\sqrt{2x-1}=2\Rightarrow2x-1=4\Rightarrow x=\dfrac{5}{2}\)

c) \(\sqrt{x^2-2x+1}-7=0\Rightarrow\sqrt{\left(x-1\right)^2}=7\Rightarrow\left|x-1\right|=7\)

\(\Rightarrow\left[{}\begin{matrix}x-1=7\\x-1=-7\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=8\\x=-6\end{matrix}\right.\)

d) \(\dfrac{1}{2}\sqrt{\dfrac{49x}{x+2}}-3\sqrt{\dfrac{x}{4x+8}}-2\sqrt{\dfrac{x}{x+2}}-\sqrt{5}=0\left(\dfrac{x}{x+2}\ge0,x\ne-2\right)\)

\(\Rightarrow\dfrac{7}{2}\sqrt{\dfrac{x}{x+2}}-3\sqrt{\dfrac{x}{4\left(x+2\right)}}-2\sqrt{\dfrac{x}{x+2}}=\sqrt{5}\)

\(\Rightarrow\dfrac{7}{2}\sqrt{\dfrac{x}{x+2}}-\dfrac{3}{2}\sqrt{\dfrac{x}{x+2}}-2\sqrt{\dfrac{x}{x+2}}=\sqrt{5}\)

\(\Rightarrow0=\sqrt{5}\) (vô lý) \(\Rightarrow\) pt vô nghiệm

 

28 tháng 7 2021

a) \(\sqrt{4x}+\sqrt{\dfrac{x}{4}}+\dfrac{1}{2}\sqrt{49x}=6\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\2\sqrt{x}+\dfrac{\sqrt{x}}{2}+\dfrac{7}{2}\sqrt{x}=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\sqrt{x}\left(2+\dfrac{1}{2}+\dfrac{7}{2}\right)=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\6\sqrt{x}=6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\sqrt{x}=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x=1\end{matrix}\right.\) \(\Leftrightarrow x=1\)

Vậy \(S=\left\{1\right\}\)

b) \(\sqrt{18x-9}-0.5\sqrt{2x-1}+\dfrac{1}{2}\sqrt{25\left(2x-1\right)}+\sqrt{49\left(2x-1\right)}=24\)

\(\Leftrightarrow3\sqrt{2x-1}-0,5\sqrt{2x-1}+\dfrac{5}{2}\sqrt{2x-1}+7\sqrt{2x-1}=24\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-1\ge0\\\sqrt{2x-1}\left(3-0.5+\dfrac{5}{2}+7\right)=49\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\12\sqrt{2x-1}=24\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\\sqrt{2x-1}=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\2x-1=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\) \(\Leftrightarrow x=\dfrac{5}{2}\)

Vậy \(S=\left\{\dfrac{5}{2}\right\}\)

c) \(\sqrt{x^2-2x+1}-7=0\) (*)

Ta có \(x^2-2x+1=\left(x-1\right)^2\ge0\forall x\) \(\Rightarrow\sqrt{x^2-2x+1}\ge0\forall x\)

(*) \(\Leftrightarrow\sqrt{\left(x-1\right)^2}-7=0\)

\(\Leftrightarrow\left|x-1\right|-7=0\)

\(\Leftrightarrow x-1-7=0\)

\(\Leftrightarrow x=8\)

Vậy \(S=\left\{8\right\}\)

\(\)d) \(\dfrac{1}{2}\sqrt{\dfrac{49x}{x+2}}-3\sqrt{\dfrac{x}{4x+8}}-2\sqrt{\dfrac{x}{x+2}}-\sqrt{5}=0\) (**)

\(\Leftrightarrow\dfrac{7}{2}\sqrt{\dfrac{x}{x+2}}-\dfrac{3}{2}\sqrt{\dfrac{x}{x+2}}-2\sqrt{\dfrac{x}{x+2}}=\sqrt{5}\)

ĐKXĐ: \(\dfrac{x}{x+2}\ge0\)  \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x+2>0\end{matrix}\right.\\\left\{{}\begin{matrix}x\le0\\x+2< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x>-2\end{matrix}\right.\\\left\{{}\begin{matrix}x\le0\\x< -2\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\ge0\\x< -2\end{matrix}\right.\)

(**) \(\Leftrightarrow\sqrt{\dfrac{x}{x+2}}\left(\dfrac{7}{2}-\dfrac{3}{2}-2\right)=\sqrt{5}\)

\(\Leftrightarrow0\sqrt{\dfrac{x}{x+2}}=\sqrt{5}\) 

\(\Leftrightarrow0=\sqrt{5}\) ( vô lý )

Vậy phương trình trên vô nghiệm

 

 

3 tháng 5 2023

BÀI 3:

loading...

3 tháng 5 2023

bài 4:

loading...

AH
Akai Haruma
Giáo viên
6 tháng 10 2021

a. ĐKXĐ: $x\in\mathbb{R}$

PT \(\Rightarrow \left\{\begin{matrix} 2-x\geq 0\\ x^2+x+2=(3-x)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\leq 2\\ x^2+x+2=x^2-6x+9\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\leq 2\\ 7x=7\end{matrix}\right.\Leftrightarrow x=1\)

b. ĐKXĐ: $x\geq -1$

PT $\Leftrightarrow (x^2-1)+\sqrt{x+1}=0$

$\Leftrightarrow (x-1)(x+1)+\sqrt{x+1}=0$

$\Leftrightarrow \sqrt{x+1}[(x-1)\sqrt{x+1}+1]=0$

$\Leftrightarrow \sqrt{x+1}=0$ hoặc $(x-1)\sqrt{x+1}+1=0$

Nếu $\sqrt{x+1}=0$

$\Leftrightarrow x=-1$ (tm)

Nếu $(x-1)\sqrt{x+1}+1=0$

$\Leftrightarrow (x-1)\sqrt{x+1}=-1$

$\Rightarrow (x-1)^2(x+1)=1$

$\Leftrightarrow x^3-x^2-x=0$

$\Leftrightarrow x(x^2-x-1)=0$

$\Leftrightarrow x=0$ hoặc $x^2-x-1=0$

$\Leftrightarrow x=0$ hoặc $x=\frac{1\pm \sqrt{5}}{2}$

Kết hợp đkxđ suy ra $x=0; -1; \frac{1\pm \sqrt{5}}{2}$

 

AH
Akai Haruma
Giáo viên
6 tháng 10 2021

c. ĐKXĐ: $x\geq 2$

PT $\Leftrightarrow \sqrt{(x-2)(x+2)}-2\sqrt{x-2}=0$

$\Leftrightarrow \sqrt{x-2}(\sqrt{x+2}-2)=0$

$\Leftrightarrow \sqrt{x-2}=0$ hoặc $\sqrt{x+2}-2=0$

$\Leftrightarrow x=2$  (thỏa mãn)

d. ĐKXĐ: $x\geq 3$ hoặc $x\leq -4$

PT \(\Rightarrow \left\{\begin{matrix} 8-x\geq 0\\ x^2+x-12=(8-x)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\leq 8\\ x^2+x-12=x^2-16x+64\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\leq 8\\ 17x=76\end{matrix}\right.\Leftrightarrow x=\frac{76}{17}\) (tm)

 

5:

a: góc ACB=1/2*180=90 độ

Xét ΔAKH vuông tại K và ΔACB vuông tại A có

góc KAH chung

=>ΔAKH đồng dạng với ΔACB

b: Xét ΔADC và ΔBEC có

AD=BE

góc DAC=góc EBC

AC=BC

=>ΔADC=ΔBEC

=>DC=EC

=>ΔDEC cân tại C

góc CAB=45 độ

=>góc CDE=góc CAB=45 độ

=>ΔCDE vuông cân tại C