Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{2}+\dfrac{2}{4}+\dfrac{3}{8}+...+\dfrac{10}{2^{10}}\)
\(2A=\dfrac{1}{1}+\dfrac{2}{2}+\dfrac{3}{4}+...+\dfrac{10}{2^9}\)
\(2A-A=\left(1+\dfrac{2}{2}+\dfrac{3}{4}+...+\dfrac{10}{2^9}\right)-\left(\dfrac{1}{2}+\dfrac{2}{4}+...+\dfrac{10}{2^{10}}\right)\)
\(A=1+\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2^9}-\dfrac{10}{2^{10}}\)
\(B=1+\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2^9}\)
\(2B=2+1+\dfrac{1}{2}+...+\dfrac{1}{2^8}\)
\(2B-B=\left(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^8}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2^9}\right)\)
\(B=2-\dfrac{1}{2^9}\)
Suy ra \(A=B-\dfrac{10}{2^{10}}=2-\dfrac{1}{2^9}-\dfrac{10}{2^{10}}=\dfrac{509}{256}\)
c: \(=\dfrac{-27\cdot100}{-30}=\dfrac{2700}{30}=90\)
3: \(\Leftrightarrow x\cdot\dfrac{-3}{5}=\dfrac{1}{4}+\dfrac{3}{4}=1\)
nên x=-5/3
4: \(\Leftrightarrow x\cdot\dfrac{4}{28}=\dfrac{28}{3}\cdot\dfrac{3}{28}=1\)
hay x=28/4=7
5: \(\Leftrightarrow x:\left(\dfrac{7}{2}-\dfrac{31}{6}\right)=\dfrac{21}{5}-\dfrac{20}{3}\)
\(\Leftrightarrow x:\dfrac{-5}{3}=\dfrac{-37}{15}\)
\(\Leftrightarrow x=\dfrac{37}{15}\cdot\dfrac{5}{3}=\dfrac{37}{9}\)
c)\(\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{3}\right)\left(1+\dfrac{1}{4}\right)....\left(1+\dfrac{1}{2020}\right)\left(1+\dfrac{1}{2021}\right)\)
\(=\left(\dfrac{1.2}{1.2}+\dfrac{1}{2}\right)\left(\dfrac{1.3}{1.3}+\dfrac{1}{3}\right)...\left(\dfrac{1.2021}{1.2021}+\dfrac{1}{2021}\right)\)
\(=\dfrac{3}{1.2}\cdot\dfrac{4}{1.3}\cdot\cdot\cdot\cdot\dfrac{2022}{1.2021}\)
\(=\dfrac{3.4.5...2022}{\left(1.1.1....1\right)\left(2.3.4...2021\right)}\)
\(=\)\(\dfrac{3.4.5...2022}{2.3.4...2021}\)
\(=\dfrac{2022}{2}=1011\)
\(d\))\(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)....\left(1-\dfrac{1}{199}\right)\left(1-\dfrac{1}{200}\right)\)
\(=\left(\dfrac{2}{1.2}-\dfrac{1}{1.2}\right)\left(\dfrac{3}{1.3}-\dfrac{1}{1.3}\right)....\left(\dfrac{200}{1.200}-\dfrac{1}{1.200}\right)\)
\(=\dfrac{1.2.3....199}{\left(1.1.1....1\right).\left(2.3.4....200\right)}\)
\(=\dfrac{1.2.3...199}{2.3.4...200}\)
Nếu mik làm sai mong bạn thông cảm
\(=\left(\dfrac{1}{49}-\dfrac{1}{9}\right)\cdot...\cdot\left(\dfrac{1}{49}-\dfrac{1}{49}\right)\cdot...\cdot\left(\dfrac{1}{49}-\dfrac{1}{49^2}\right)=0\)
Answer:
\(\dfrac{1}{2}+\dfrac{2}{4}+\dfrac{3}{8}+...+\dfrac{10}{2^{10}}\)
\(=\left(\dfrac{2}{2^0}-\dfrac{3}{2^1}\right)+\left(\dfrac{3}{2^1}-\dfrac{4}{2^2}\right)+\left(\dfrac{4}{2^2}+\dfrac{5}{2^3}\right)+...+\left(\dfrac{11}{2^9}-\dfrac{12}{2^{10}}\right)\)
\(=2-\dfrac{12}{2^{10}}\)
\(=2-\dfrac{3}{256}\)
\(=\dfrac{512}{256}-\dfrac{3}{256}\)
\(=\dfrac{509}{256}\)
*Để làm bài này dễ hơn, bạn áp dụng công thức sau:
\(\dfrac{n}{2^n}=\dfrac{n+1}{2^{n-1}}-\dfrac{n+2}{2^n}\)