K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2022

8 tháng 5 2022

4 tháng 8 2023

có : \(AH\perp BD\)

        \(CK\perp DB\) =>AH//CK

Có : tứ giác ABCD là hình bình hành :

`=>` AB//CB

`=> góc ADB = góc gocd DBC

Xét tam giác `ADH` và tam giác `CBK` có

`AB = CB`(tứ giác ABCD là hbh)

`AHD = CKB = 90^0`

`ADH = CBK(c/mt)`

`=> tam giác ADH = tam giác BCK(ch-gn)

`=> AH  = CK`(t/ứng)

xét tg BHCK có :

`AH = Ck`

`AH//CK`

`=> tg BHCK là hình bình hành

25 tháng 12 2020

xét tứ giác AFCD có EA=EC;ED=EF nên tứ giác AFCD là hình bình hành

a: Xét tứ giác BFCE có

D là trung điểm của BC

D là trung điểm của FE

Do dó: BFCE là hình bình hành

b: Xét tứ giác ABFE có 

AB//FE

AB=FE

Do đó: ABFE là hình bình hành

mà \(\widehat{FAB}=90^0\)

nên ABFE là hình chữ nhật

4 tháng 1 2022

thank bạn 

 

a: =x^2+6x+9+x^2-6x+9+2x^2-32

=4x^2-14

b: =(x+3-10+x)^2=(2x-7)^2=4x^2-28x+49

c: =(x-3-x+5)^2=2^2=4

e: =x^2+10x+25-x^2+10x-25=20x

d: A=(5-1)(5+1)(5^2+1)(5^4+1)/4

=(5^2-1)(5^2+1)(5^4+1)/4

=(5^4-1)(5^4+1)/4

=(5^8-1)/4

g: =x^2-9-x^2-4x+5

=-4x-4

23 tháng 5 2022

tui mới lớp 4

23 tháng 5 2022

a, ta có A(x)=2x3+7x2+ax+b

                   =(2x3+2x2+2x)+(5x2+5x+5)+ax-7x+b-5

                   =2x(x2+x+1)+5(x2+x+1)+(a-7)x+(b-5)

                   =(x2+x+1)(2x+5)+(a-7)x+(b-5)

ta có: (x2+x+1)(2x+5)⋮B(x)

→để A(x)⋮B(x) thì (a-7)x+(b-5)=0

\(\left\{{}\begin{matrix}a-7=0\\b-5=0\end{matrix}\right.\) ⇔\(\left\{{}\begin{matrix}a=7\\b=5\end{matrix}\right.\)

vậy ....

mk trình bày hơi tắt xíu 

bn cố gắng dịch nhé

Bài 3:

b: Xét ΔABC có

I là trung điểm của BC

IK//AC

Do đó: K là trung điểm của AB

Xét ΔABC có

I là trung điểm của BC

IH//AB

Do đó: H là trung điểm của AC

Xét ΔABC có 

K là trung điểm của AB

H là trung điểm của AC

Do đó: HK là đường trung bình của ΔABC

Suy ra: HK//BC

NV
22 tháng 3 2023

a.

Do ABCD là hình chữ nhật \(\Rightarrow\widehat{HBA}=\widehat{CDB}\) (so le trong)

Xét hai tam giác HBA và CDB có:

\(\left\{{}\begin{matrix}\widehat{HBA}=\widehat{CDB}\left(cmt\right)\\\widehat{AHB}=\widehat{BCD}=90^0\end{matrix}\right.\) \(\Rightarrow\Delta HBA\sim\Delta CDB\left(g.g\right)\)

b.

Xét hai tam giác AHD và BAD có:

\(\left\{{}\begin{matrix}\widehat{ADB}\text{ chung}\\\widehat{AHD}=\widehat{BAD}=90^0\end{matrix}\right.\) \(\Rightarrow\Delta AHD\sim\Delta BAD\left(g.g\right)\)

\(\Rightarrow\dfrac{AD}{DB}=\dfrac{DH}{AD}\Rightarrow AD^2=DH.DB\)

c.

Áp dụng định lý Pitago cho tam giác vuông BAD:

\(DB=\sqrt{AD^2+AB^2}=\sqrt{BC^2+AB^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)

Theo chứng minh câu b:

\(AD^2=DH.DB\Rightarrow DH=\dfrac{AD^2}{DB}=\dfrac{BC^2}{DB}=\dfrac{6^2}{10}=3,6\left(cm\right)\)

Áp dụng Pitago cho tam giác vuông AHD:

\(AH=\sqrt{AD^2-HD^2}=\sqrt{6^2-3,6^2}=4,8\left(cm\right)\)

NV
22 tháng 3 2023

loading...

13 tháng 12 2022

Bài này trong sách là trên mạng có ấy c lên ytb shears cho nhanh 

13 tháng 12 2022

Tìm thế nào vậy cậu mik tìm ko ra cái này là mik đc giao đề á chứ ko có trong sách cậu ạ .