K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 9 2021

\(B=cos^212+sin^2\left(90-78\right)+cos^21+sin^2\left(90-89\right)\)

\(=cos^212+sin^212+cos^21+sin^21=1+1=2\)

\(C=sin^23+sin^215+cos^2\left(90-75\right)+cos^2\left(90-87\right)\)

\(=sin^23+cos^23+sin^215+cos^215=1+1=2\)

\(E=\dfrac{tan64}{cot26}-1=\dfrac{tan64}{tan\left(90-26\right)}-1=\dfrac{tan64}{tan64}-1=1-1=0\)

10 tháng 4 2023

Để phương trình có 2 nghiệm phân biệt thì:

\(\Delta>0\\ \Leftrightarrow\left(-5\right)^2-4.1.\left(m+4\right)>0\\ \Leftrightarrow25-4m-16>0\\\Leftrightarrow9-4m>0\\ \Leftrightarrow m< \dfrac{9}{4}\)

Theo viét: 

\(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=m+4\end{matrix}\right.\)

c,

\(\left|x_1-x_2\right|=3\\ \Leftrightarrow\left(x_1-x_2\right)^2=9\\ \Leftrightarrow x_1^2-2x_1x_2+x_2^2=9\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=9\\ \Leftrightarrow5^2-4\left(m+4\right)=9\\ \Leftrightarrow25-4m-16=9\\ \Leftrightarrow m=0\left(nhận\right)\) 

d.

\(\left|x_1\right|+\left|x_2\right|=4\\ \)

Xét trường hợp 1: hai nghiệm đều dương:

ta có:

\(x_1+x_2=4\)

5 = 4 (vô lý)

Loại trường hợp này.

Xét trường hợp 2: hai nghiệm đều âm, tương tự ta loại trường hợp này.

Xét trường hợp 3: 

\(x_1< 0< x_2\)

=> \(x_2-x_1=4\)

<=> \(x_2+x_1-2x_1=4\)

=> \(5-2x_1=4\)

=> \(x_1=\dfrac{1}{2}\)

\(x_2< 0< x_1\)

 \(x_1-x_2=4\\ \Leftrightarrow x_1+x_2-2x_2=4\\ \Leftrightarrow5-2x_2=4\\ \Rightarrow x_2=\dfrac{1}{2}\)

Có: \(x_1x_2=m+4\\\)

<=> \(\dfrac{1}{2}.\dfrac{1}{2}=m+4\)

=> m = -3,75 (nhận)

e.

Theo viét và theo đề ta có:

\(\left\{{}\begin{matrix}3x_1+4x_2=6\left(1\right)\\x_1+x_2=5\left(2\right)\\x_1x_2=m+4\left(3\right)\end{matrix}\right.\)

Từ (1) có \(x_1=\dfrac{6-4x_2}{3}=2-\dfrac{4}{3}x_2\) (x)

Thế (x) vào (2) được \(2-\dfrac{4}{3}x_2+x_2=5\)

=> \(x_2=-9\) (xx)

Thế (xx) vào (1) được \(3x_1+4.\left(-9\right)=6\)

=> \(x_1=14\) (xxx)

Thế (xx) và (xxx) vào (3) được:

\(14.\left(-9\right)=m+4\)

=> m = -130 (nhận)

h.

\(x_1\left(1-3x_2\right)+x_2\left(1-3x_1\right)=m^2-23\)

<=> \(x_1-3x_1x_2+x_2-3x_1x_2=m^2-23\)

<=> \(x_1+x_2-6x_1x_2=m^2-23\)

<=> \(5-6.\left(m+4\right)=m^2-23\)

<=> \(5-6m-20-m^2+23=0\)

<=> \(-m^2-6m+8=0\)

\(\Delta=\left(-6\right)^2-4.\left(-1\right).8=68\)

\(m_1=\dfrac{6+\sqrt{68}}{2.\left(-1\right)}=-3-\sqrt{17}\left(nhận\right)\)

\(m_2=\dfrac{6-\sqrt{68}}{2.\left(-1\right)}=-3+\sqrt{17}\left(nhận\right)\)

T.Lam

Mình không chắc chắn ở câu d, mình lên đây để ôn bài thi tiện thể giúp được bạn phần nào.

 

tan C=49/95

=>\(\widehat{C}\simeq27^017'\)

6 tháng 9 2023

tan C=49/95

=>ˆC≃27017′

29 tháng 10 2021

giải kĩ hộ e câu b ak đừng lm ngắn gọn quá

31 tháng 10 2021

b: Xét ΔAHC vuông tại H có

\(AH^2+HC^2=AC^2\)

nên \(AC^2-HC^2=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AH^2=AN\cdot AC\left(2\right)\)

Từ (1) và (2) suy ra \(AN\cdot AC=AC^2-HC^2\)

25 tháng 12 2021

1: Xét ΔABE vuông tại B và ΔADC vuông tại D có

\(\widehat{AEB}=\widehat{ACD}\)

Do đó: ΔABE∼ΔADC

Suy ra: \(\dfrac{AB}{AD}=\dfrac{AE}{AC}\)

hay \(AB\cdot AC=AE\cdot AD\)

25 tháng 12 2021

Giải giúp em câu 2 với câu 3 đc ko ạ

NV
24 tháng 8 2021

\(\sqrt{9-3\sqrt{5}}-\sqrt{9+3\sqrt{5}}=\dfrac{1}{\sqrt{2}}\left(\sqrt{18-6\sqrt{5}}-\sqrt{18+6\sqrt{5}}\right)\)

\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{15}-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{15}+\sqrt{3}\right)^2}\right)\)

\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{15}-\sqrt{3}-\sqrt{15}-\sqrt{3}\right)=-\dfrac{2\sqrt{3}}{\sqrt{2}}=-\sqrt{6}\)

\(\sqrt{4-\sqrt{15}}+\sqrt{4+\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)

\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{8-2\sqrt{15}}+\sqrt{8+2\sqrt{15}}-2\sqrt{6-2\sqrt{5}}\right)\)

\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}-2\sqrt{\left(\sqrt{5}-1\right)^2}\right)\)

\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{5}-\sqrt{3}+\sqrt{5}+\sqrt{3}-2\left(\sqrt{5}-1\right)\right)\)

\(=\dfrac{2}{\sqrt{2}}=\sqrt{2}\)

k: Ta có: \(\sqrt{9-3\sqrt{5}}-\sqrt{9+3\sqrt{5}}\)

\(=\dfrac{\sqrt{18-6\sqrt{5}}-\sqrt{18+6\sqrt{5}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{15}-\sqrt{3}-\sqrt{15}-\sqrt{3}}{\sqrt{2}}\)

\(=-\sqrt{6}\)