K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2022

Ta có: \(x^2-3x+2=\left(1-x\right)\sqrt{3x-2}\) \(\left(x\ge\dfrac{2}{3}\right)\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)-\left(1-x\right)\sqrt{3x-2}=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2+\sqrt{3x-2}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2+\sqrt{3x-2}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(TM\right)\\\sqrt{3x-2}=2-x\left(1\right)\end{matrix}\right.\)

Xét (1) ta có: \(\left\{{}\begin{matrix}2-x\ge0\\3x-2=4-4x+x^2\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}2\ge x\\x^2-7x+6=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x\le2\\\left[{}\begin{matrix}x=6\left(KTM\right)\\x=1\left(TM\right)\end{matrix}\right.\end{matrix}\right.\)

Vậy nghiệm của phương trình là x=1

13 tháng 2 2022

ĐKXĐ : x \(\ge\dfrac{2}{3}\)

Ta có \(\left(x-1\right)\left(x-2\right)=\sqrt{3x-2}\left(1-x\right)\)

<=> \(\left(x-1\right)\left(x-2+\sqrt{3x-2}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\\sqrt{3x-2}=2-x\end{matrix}\right.\)

Khi x - 1 = 0 <=> x = 1 (tm)

Khi \(\sqrt{3x-2}=2-x\)

<=> \(\left\{{}\begin{matrix}3x-2=x^2-4x+4\\\dfrac{2}{3}\le x\le2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-7x+6=0\\\dfrac{2}{3}\le x\le2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x-6\right)=0\\\dfrac{2}{3}\le x\le2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=1\\x=6\end{matrix}\right.\\\dfrac{2}{3}\le x\le2\end{matrix}\right.\Leftrightarrow x=1\)

Vậy phương trình 1 nghiêm \(x=1\)

Câu 2:

=>x=1-y và m(1-y)-y=2m

=>x=1-y và m-my-y=2m

=>x=1-y và y(-m-1)=m

=>x=1-y và y=-m/m+1

=>x=1+m/m+1=(m+2)/m+1 và y=-m/m+1

Để x,y nguyên thì m+1+1 chia hết cho m+1 và -m-1+1 chia hết cho m+1

=>\(m+1\in\left\{1;-1\right\}\)

mà m<>0

nên m=-2

11 tháng 1 2022

Chọn C và Chọn A

26 tháng 10 2021

b: \(BC=\sqrt{89}\left(cm\right)\)

\(\sin\widehat{B}=\dfrac{5\sqrt{89}}{89}\)

\(\Leftrightarrow\widehat{B}\simeq32^0\)

\(\widehat{C}=58^0\)

26 tháng 9 2021

\(A=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\right)\left(1-\dfrac{1}{\sqrt{x}}\right)\left(đk:x>0,x\ne1\right)\)

\(=\dfrac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}-1}{\sqrt{x}}\)

\(=\dfrac{x+2\sqrt{x}+1-x+2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{4\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}=\dfrac{4}{\sqrt{x}+1}\)

20 tháng 9 2021

mình làm câu dưới r nha

1) Ta có: \(\sqrt{2x+5}=\sqrt{3-x}\)

\(\Leftrightarrow2x+5=3-x\)

\(\Leftrightarrow2x+x=3-5\)

\(\Leftrightarrow3x=-2\)

hay \(x=-\dfrac{2}{3}\)

2) Ta có: \(\sqrt{2x-5}=\sqrt{x-1}\)

\(\Leftrightarrow2x-5=x-1\)

\(\Leftrightarrow2x-x=-1+5\)

\(\Leftrightarrow x=4\)

23 tháng 8 2021

3 , \(PT\left(đk:\frac{16}{3}\ge x\ge3\right)< =>x^2-3x=16-3x\)

\(< =>x^2-16=0< =>\left(x-4\right)\left(x+4\right)=0< =>\orbr{\begin{cases}x=4\left(tm\right)\\x=-4\left(ktm\right)\end{cases}}\)

4 , \(PT\left(đk:...\right)< =>2x^2-3=4x-3< =>2x^2-4x=0\)

\(< =>2x\left(x-2\right)=0< =>\orbr{\begin{cases}x=0\left(...\right)\\x=2\left(...\right)\end{cases}}\)

bạn tự tìm đk rồi đối chiếu nhé :P

1) Ta có: \(\sqrt{4x}=\sqrt{5}\)

nên 4x=5

hay \(x=\dfrac{5}{4}\)

2) Ta có: \(\sqrt{16x}=8\)

nên 16x=64

hay x=4

 

23 tháng 8 2021

3, \(2\sqrt{x}=\sqrt{9x}-3\left(đk:x\ge0\right)\)

\(< =>2\sqrt{x}-3\sqrt{x}+3=0\)

\(< =>3-\sqrt{x}=0< =>x=9\)(tmđk)

4, \(\sqrt{3x-1}=4\left(đk:x\ge\frac{1}{3}\right)\)

\(< =>3x-1=16< =>3x-17=0\)

\(< =>x=\frac{17}{3}\)(tmđk)

26 tháng 10 2021

câu 5: 

x=3,6

y=6,4

câu 6: chụp lại đề

câu 7:

a)ĐKXĐ: \(x\ge0\)

\(3\sqrt{x}=\sqrt{12}\\ \Rightarrow9x=12\\ \Rightarrow x=\dfrac{4}{3}\)

b) ĐKXĐ: \(x\ge6\)

\(\sqrt{x-6}=3\\ \Rightarrow x-6=9\\ \Rightarrow x=15\)

26 tháng 10 2021

Câu 5: 

Áp dụng định lý Pi-ta-go ta có:

\(AB^2+AC^2=BC^2\\ \Rightarrow BC=\sqrt{6^2+8^2}\\ \Rightarrow BC=10\)

Áp dụng HTL ta có: \(x.BC=AB^2\Rightarrow x.10=6^2\Rightarrow x=3,6\)

Áp dụng HTL ta có: \(x.BC=AC^2\Rightarrow x.10=8^2\Rightarrow x=6,4\)