K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2021

\(k,=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)+5\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}+5}\\ =\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}+5\right)}{\sqrt{a}+\sqrt{b}+5}=\sqrt{a}-\sqrt{b}\)

8 tháng 10 2021

\(h,=\dfrac{1}{2a-1}\sqrt{25a^2\left(a^2-4a+4\right)}=\dfrac{1}{2a-1}\sqrt{25a^2\left(a-2\right)^2}\\ =\dfrac{\left|5a\left(a-2\right)\right|}{2a-1}=\left[{}\begin{matrix}\dfrac{5a\left(a-2\right)}{2a-1}\left(a\ge2;a\ne\dfrac{1}{2}\right)\\\dfrac{5a\left(2-a\right)}{2a-1}\left(0\le a< 2;a\ne\dfrac{1}{2}\right)\\\dfrac{-5a\left(2-a\right)}{2a-1}\left(a< 0\right)\end{matrix}\right.\)

a: Ta có: \(\sqrt{75}-\sqrt{5\dfrac{1}{3}}+\dfrac{9}{2}\sqrt{2\dfrac{2}{3}}+2\sqrt{27}\)

\(=5\sqrt{3}+\dfrac{4}{3}\sqrt{3}+3\sqrt{6}+6\sqrt{3}\)

\(=\dfrac{37}{3}\sqrt{3}+3\sqrt{6}\)

c: Ta có: \(\left(\sqrt{12}+2\sqrt{27}\right)\cdot\dfrac{\sqrt{3}}{2}-\sqrt{150}\)

\(=\left(2\sqrt{3}+6\sqrt{3}\right)\cdot\dfrac{\sqrt{3}}{2}-5\sqrt{6}\)

\(=12-5\sqrt{6}\)

19 tháng 8 2021

Chị ơi không giải BDEF HỘ EM HẢ ;-;?

 

f: Thay x=0 và y=5 vào (d), ta được: 

m-1=5

hay m=6

e: Thay x=1 và y=4 vào (d),ta được:

2m+3+m-1=4

=>3m+2=4

hay m=2/3

16 tháng 9 2021

\(e,3\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}=8\left(x\ge0\right)\\ \Leftrightarrow\sqrt{x}\left(3\sqrt{2}-5\sqrt{8}+7\sqrt{18}\right)=8\\ \Leftrightarrow\sqrt{x}\left(3\sqrt{2}-10\sqrt{2}+21\sqrt{2}\right)=8\\ \Leftrightarrow14\sqrt{2x}=8\Leftrightarrow\sqrt{2x}=\dfrac{4}{7}\Leftrightarrow2x=\dfrac{16}{49}\Leftrightarrow x=\dfrac{8}{49}\left(tm\right)\)

\(f,\sqrt{4x+20}-\sqrt{x+5}-\dfrac{1}{3}\sqrt{9x+45}=4\left(x\ge-5\right)\\ \Leftrightarrow2\sqrt{x+5}-\sqrt{x+5}-\dfrac{1}{3}\cdot3\sqrt{x+5}=4\\ \Leftrightarrow0\sqrt{x+5}=4\\ \Leftrightarrow\sqrt{x+5}=0\Leftrightarrow x+5=0\Leftrightarrow x=-5\left(tm\right)\)

16 tháng 9 2021

e) \(3\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}=8\left(đk:x\ge0\right)\)

\(\Leftrightarrow3\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=8\)

\(\Leftrightarrow14\sqrt{2x}=8\Leftrightarrow\sqrt{2x}=\dfrac{8}{14}\Leftrightarrow2x=\dfrac{16}{49}\Leftrightarrow x=\dfrac{8}{49}\left(tm\right)\)

f) \(\sqrt{4x+20}-\sqrt{x+5}-\dfrac{1}{3}\sqrt{9x+45}=4\)

\(\Leftrightarrow2\sqrt{x+5}-\sqrt{x+5}-\sqrt{x+5}=4\)

\(\Leftrightarrow0=4\left(VLý\right)\)

Vậy \(x\in\left\{\varnothing\right\}\)

a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAKC vuông tại K có KF là đường cao ứng với cạnh huyền AC, ta được:

\(AF\cdot AC=AK^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có KA là đường cao ứng với cạnh huyền BC, ta được:

\(KB\cdot KC=AK^2\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra \(AF\cdot AC=KB\cdot KC\)

b: Xét tứ giác AEKF có 

\(\widehat{FAE}=\widehat{AFK}=\widehat{AEK}=90^0\)

Do đó: AEKF là hình chữ nhật

Suy ra: \(AK=EF\left(3\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAKB vuông tại K có KE là đường cao ứng với cạnh huyền AB, ta được:

\(AE\cdot AB=AK^2\left(4\right)\)

Từ \(\left(3\right),\left(4\right)\) suy ra \(EF^2=AE\cdot AB\)

c: Ta có: \(AE\cdot AB+AF\cdot AC+KB\cdot KC\)

\(=AH^2+AH^2+AH^2\)

\(=3\cdot EF^2\)

5 tháng 2 2022

\(b,\dfrac{\sqrt{12}-\sqrt{6}}{\sqrt{30}-\sqrt{15}}=\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{\sqrt{15}\left(\sqrt{2}-1\right)}=\dfrac{\sqrt{6}}{\sqrt{15}}=\dfrac{\sqrt{2}}{\sqrt{5}}\)

\(d,\dfrac{ab-bc}{\sqrt{ab}-\sqrt{bc}}=\dfrac{\left(\sqrt{ab}-\sqrt{bc}\right)\left(\sqrt{ab}+\sqrt{bc}\right)}{\left(\sqrt{ab}-\sqrt{bc}\right)}=\sqrt{ab}+\sqrt{bc}=\sqrt{b}\left(\sqrt{a}+\sqrt{c}\right)\)

\(e,\left(a\sqrt{\dfrac{a}{b}+2\sqrt{ab}}+b\sqrt{\dfrac{a}{b}}\right)\sqrt{ab}\)

\(=a\left(\sqrt{\dfrac{a}{b}+\dfrac{2b.\sqrt{ab}}{b}}+b\sqrt{\dfrac{a}{b}}\right)\sqrt{ab}\)

\(=a\sqrt{a}\sqrt{a+2b\sqrt{ab}}+b\sqrt{a^2}\)

\(=a\sqrt{a^2+2ab\sqrt{ab}}+ab\)

\(=a\left(\sqrt{a^2+2ab\sqrt{ab}}+b\right)\)

\(f,\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\)

\(=\left(a+\sqrt{a}+1+\sqrt{a}\right)\left(a-\sqrt{a}+1-\sqrt{a}\right)\)

\(=\left(a+2\sqrt{a}+1\right)\left(a-2\sqrt{a}+1\right)\)

\(=\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)^2\)

\(=\left(a-1\right)^2=a^2-2a+1\)

4 tháng 10 2021

\(2,\\ a,x=36\Leftrightarrow P=\dfrac{6+1}{6-2}=\dfrac{7}{4}\\ b,x=6-2\sqrt{5}\Leftrightarrow\sqrt{x}=\sqrt{5}-1\\ \Leftrightarrow P=\dfrac{\sqrt{5}-1+1}{\sqrt{5}-1-2}=\dfrac{\sqrt{5}}{\sqrt{5}-3}=\dfrac{5-3\sqrt{5}}{2}\\ c,x=\dfrac{2}{2+\sqrt{3}}=4-2\sqrt{3}\Leftrightarrow\sqrt{x}=\sqrt{3}-1\\ \Leftrightarrow P=\dfrac{\sqrt{3}-1+1}{\sqrt{3}-1-2}=\dfrac{\sqrt{3}}{\sqrt{3}-3}=\dfrac{3\left(\sqrt{3}+1\right)}{-6}=\dfrac{-\sqrt{3}-1}{2}\)

e:

\(E=\left(\dfrac{\sqrt{15}-\sqrt{20}}{2-\sqrt{3}}+\dfrac{\sqrt{21}-\sqrt{7}}{1-\sqrt{3}}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\)

\(=\left(-\dfrac{\sqrt{5}\left(2-\sqrt{3}\right)}{2-\sqrt{3}}-\dfrac{\sqrt{7}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}\right)\cdot\dfrac{\sqrt{7}-\sqrt{5}}{1}\)

\(=-\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)\)

=-2

f: \(F=\sqrt{3}+1+2-\sqrt{3}=3\)

24 tháng 9 2021

\(e,=\dfrac{\left(3+\sqrt{2}\right)\left(2\sqrt{2}+1\right)}{7}-\sqrt{\dfrac{\left(\sqrt{2}+1\right)^2}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}}\\ =\dfrac{7\sqrt{2}+7}{7}-\dfrac{\sqrt{2}+1}{1}=\sqrt{2}+1-\sqrt{2}-1=0\)

\(f,=\sqrt{\dfrac{\left(2\sqrt{3}-3\right)^2}{\left(2\sqrt{3}-3\right)\left(2\sqrt{3}+3\right)}}\left(2+\sqrt{3}\right)\\ =\dfrac{\left(2\sqrt{3}-3\right)\left(2+\sqrt{3}\right)}{\sqrt{3}}\\ =\dfrac{\sqrt{3}}{\sqrt{3}}=1\)

\(h,=\sqrt{\dfrac{\left(3\sqrt{5}-1\right)\left(2\sqrt{5}-3\right)}{20-9}}\left(\sqrt{2}+\sqrt{10}\right)\\ =\sqrt{\dfrac{2\left(33-11\sqrt{5}\right)}{11}}\left(\sqrt{5}+1\right)\\ =\sqrt{\dfrac{22\left(3-\sqrt{5}\right)}{11}}\left(\sqrt{5}+1\right)\\ =\sqrt{6-2\sqrt{5}}\left(\sqrt{5}+1\right)=\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)=4\)