K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 8:

Thay x=3 vào phương trình, ta được:

\(\left(3+2\right)\cdot f\left(3\right)-f\left(\dfrac{1}{3}\right)=3^2-1\)

=>\(5\cdot f\left(3\right)-f\left(\dfrac{1}{3}\right)=8\left(1\right)\)

Thay x=1/3 vào phương trình, ta được:

\(\left(\dfrac{1}{3}+2\right)\cdot f\left(\dfrac{1}{3}\right)-f\left(3\right)=\left(\dfrac{1}{3}\right)^2-1\)

=>\(\dfrac{7}{3}\cdot f\left(\dfrac{1}{3}\right)-f\left(3\right)=-\dfrac{8}{9}\)

=>\(f\left(3\right)-\dfrac{7}{3}\cdot f\left(\dfrac{1}{3}\right)=\dfrac{8}{9}\left(2\right)\)

Từ (1),(2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}5\cdot f\left(3\right)-f\left(\dfrac{1}{3}\right)=8\\f\left(3\right)-\dfrac{7}{3}\cdot f\left(\dfrac{1}{3}\right)=\dfrac{8}{9}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{35}{3}\cdot f\left(3\right)-\dfrac{7}{3}\cdot f\left(\dfrac{1}{3}\right)=\dfrac{56}{3}\\f\left(3\right)-\dfrac{7}{3}\cdot f\left(\dfrac{1}{3}\right)=\dfrac{8}{9}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{32}{3}\cdot f\left(3\right)=\dfrac{56}{3}-\dfrac{8}{9}=\dfrac{160}{9}\\5\cdot f\left(3\right)-f\left(\dfrac{1}{3}\right)=8\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}f\left(3\right)=\dfrac{5}{3}\\f\left(\dfrac{1}{3}\right)=5\cdot\dfrac{5}{3}-8=\dfrac{25}{3}-8=\dfrac{1}{3}\end{matrix}\right.\)

vậy: \(f\left(\dfrac{1}{3}\right)=\dfrac{1}{3}\)

2 tháng 7 2023

\(b,\dfrac{1}{2}+\dfrac{13}{19}-\dfrac{4}{9}+\dfrac{6}{19}+\dfrac{5}{18}\\ =\left(\dfrac{1}{2}+\dfrac{5}{18}\right)+\left(\dfrac{13}{19}+\dfrac{6}{19}\right)-\dfrac{4}{9}\\ =\left(\dfrac{9}{18}+\dfrac{5}{18}\right)+\dfrac{19}{19}-\dfrac{4}{9}\\ =\dfrac{14}{18}+1-\dfrac{4}{9}\\ =\dfrac{7}{9}+1-\dfrac{4}{9}\\ =\left(\dfrac{7}{9}-\dfrac{4}{9}\right)+1\\ =\dfrac{3}{9}+1\\ =\dfrac{1}{3}+1\\ =\dfrac{4}{3}\)

\(c,\dfrac{-20}{23}+\dfrac{2}{3}-\dfrac{3}{23}+\dfrac{2}{5}+\dfrac{7}{15}\\ =\left(-\dfrac{20}{23}-\dfrac{3}{23}\right)+\left(\dfrac{2}{5}+\dfrac{7}{15}\right)+\dfrac{2}{3}\\ =-\dfrac{23}{23}+\left(\dfrac{6}{15}+\dfrac{7}{15}\right)+\dfrac{2}{3}\\ =-1+\dfrac{13}{15}+\dfrac{2}{3}\\ =-\dfrac{15}{15}+\dfrac{13}{15}+\dfrac{10}{15}\\ =\dfrac{8}{15}\)

\(e,\dfrac{5}{7}.\dfrac{5}{11}+\dfrac{5}{7}.\dfrac{2}{11}-\dfrac{5}{7}.\dfrac{14}{11}\\ =\dfrac{5}{7}.\left(\dfrac{5}{11}+\dfrac{2}{11}-\dfrac{14}{11}\right)\\ =\dfrac{5}{7}.\dfrac{-7}{11}\\ =-\dfrac{35}{77}\\ =-\dfrac{5}{11}\)

\(f,\dfrac{2}{11}.\dfrac{-5}{4}+\dfrac{-9}{11}.\dfrac{5}{4}+1\dfrac{3}{4}\\ =-\dfrac{2}{11}.\dfrac{5}{4}+\dfrac{-9}{11}.\dfrac{5}{4}+\dfrac{7}{4}\\=\dfrac{5}{4}.\left(-\dfrac{2}{11}+\dfrac{-9}{11}\right)+\dfrac{7}{4}\\ =\dfrac{5}{4}.1+\dfrac{7}{4}\\ =\dfrac{5}{4}+\dfrac{7}{4}\\=\dfrac{12}{4}\\ =3\)

\(h,\dfrac{7}{4}\cdot\dfrac{29}{5}-\dfrac{7}{5}\cdot\dfrac{9}{4}+3\dfrac{2}{13}\\ =\dfrac{7}{4}\cdot\dfrac{29}{5}-\dfrac{7}{4}\cdot\dfrac{9}{5}+\dfrac{41}{13}\\ =\dfrac{7}{4}\cdot\left(\dfrac{29}{5}-\dfrac{9}{5}\right)+\dfrac{41}{13}\\ =\dfrac{7}{4}\cdot\dfrac{20}{5}+\dfrac{41}{13}\\ =\dfrac{7}{4}.4+\dfrac{41}{13}\\ =\dfrac{28}{4}+\dfrac{41}{13}\\ =7+\dfrac{41}{13}\\ =\dfrac{132}{13}\)

 

3 tháng 7 2023

(a) \(A=\dfrac{3}{x-2}\in Z\)

\(\Rightarrow\left(x-2\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow\left[{}\begin{matrix}x-1=1\\x-1=-1\\x-1=3\\x-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\\x=4\\x=-2\end{matrix}\right.\)

Vậy: \(x\in\left\{-2;0;2;4\right\}.\)

 

(b) \(B=-\dfrac{11}{2x-3}\in Z\)

\(\Rightarrow\left(2x-3\right)\inƯ\left(11\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow\left[{}\begin{matrix}2x-3=1\\2x-3=-1\\2x-3=11\\2x-3=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\\x=7\\x=-4\end{matrix}\right.\)

Vậy: \(x\in\left\{-4;1;2;7\right\}.\)

 

(c) \(C=\dfrac{x+3}{x+1}=\dfrac{\left(x+1\right)+2}{x+1}=1+\dfrac{2}{x+1}\in Z\Rightarrow\dfrac{2}{x+1}\in Z\)

\(\Rightarrow\left(x+1\right)\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

\(\Rightarrow\left[{}\begin{matrix}x+1=1\\x+1=-1\\x+1=2\\x+1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\\x=1\\x=-3\end{matrix}\right.\)

Vậy: \(x\in\left\{-3;-2;0;1\right\}.\)

 

(d) \(D=\dfrac{2x+10}{x+3}=\dfrac{2\left(x+3\right)+4}{x+3}=2+\dfrac{4}{x+3}\in Z\Rightarrow\dfrac{4}{x+3}\in Z\)

\(\Rightarrow\left(x+3\right)\inƯ\left(4\right)=\left\{\pm1;\pm2\pm4\right\}\)

\(\Rightarrow x\in\left\{-2;-4;-1;-5;1;-7\right\}\)

3 tháng 7 2023

câu (a) thiếu điều kiện x khác 2 rồi bạn êi

26 tháng 12 2022

\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{\left(3^2\right)^{15}.\left(2^3\right)^{11}}{3^{29}.\left(2^4\right)^8}=\dfrac{3^{30}.2^{33}}{3^{29}.2^{32}}\)

Ta lấy vễ trên chia vế dưới

\(=3.2=6\)

\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.\left(3^2\right)^3}{3^5.\left(2^4\right)^2}=\dfrac{2^{11}.3^6}{3^5.2^8}\)

Ta lấy vế trên chia vế dưới

\(=2^3.3=24\)

26 tháng 12 2022

\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{\left(3^2\right)^{15}.\left(2^3\right)^{11}}{3^{29}.\left(2^4\right)^8}=\dfrac{3^{30}.2^{33}}{3^{29}.3^{32}}=3.2=6\)
\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.\left(3^2\right)^3}{3^5.\left(2^4\right)^2}=\dfrac{2^{11}.3^6}{3^5.2^8}=2^3.3=8.3=24\)

a) Trong cùng phía

b) đồng vị

c) so le trong

d) so le trong

e) trong cùng phía

Ta có: \(5^x+25\cdot5^{x+1}-125\cdot5^{x+2}=-74975\)

\(\Leftrightarrow5^x+25\cdot5^x\cdot5-125\cdot25\cdot5^x=-74975\)

\(\Leftrightarrow5^x\cdot\left(1+125-3125\right)=-74975\)

\(\Leftrightarrow5^x=25\)

hay x=2

Vậy: x=2

7 tháng 5 2021

jimmmmmmmmmmmmmmmmmmmmmmmmmmm

22 tháng 12 2023

Đây là lịch sử không phải Toán, bạn nên để đúng chủ đề bài học nhé.

25 tháng 12 2023

mình biết là mình hỏi sai môn ạ

nma mình cũng đã gửi thử một câu hỏi bên phía lịch sử rồi ạ nhưng chưa có trl(T-T)

mình lên mạng tham khảo thì ko có phần nhận xét(T-T)

19 tháng 5 2021

a, M(x)= 3x^3 - 2x^2 + 1 (đã rút gọn ) , ý b bạn chỉ cần thay M(-1) và M(2) vào x lần lượt từng con là đc vd : M(-1)= 3* (-1^3) - 2* (- 1)^2 + 1 rồi tính ra kết quả là được

19 tháng 5 2021

bài 4 câu 3 ????

28 tháng 10 2023

6:

\(2^{225}=\left(2^3\right)^{75}=8^{75}\)

\(3^{150}=\left(3^2\right)^{75}=9^{75}\)

mà 8<9

nên \(2^{225}< 3^{150}\)

4: \(\left|5x+3\right|>=0\forall x\)

=>\(-\left|5x+3\right|< =0\forall x\)

=>\(-\left|5x+3\right|+5< =5\forall x\)

Dấu = xảy ra khi 5x+3=0

=>x=-3/5

1:

\(\left(2x+1\right)^4>=0\)

=>\(\left(2x+1\right)^4+2>=2\)

=>\(M=\dfrac{3}{\left(2x+1\right)^4+2}< =\dfrac{3}{2}\)

Dấu = xảy ra khi 2x+1=0

=>x=-1/2