Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(C=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(x+y-1\right)\)
\(C=x^2\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-1\right)=x+y-1\) (do x+y-2=0)
Mà x+y-2=0 => x+y-1=1 => C=1
b/ Với x=2; y=2 Ta nhận thấy \(x^3-2y^2=2^3-2.2^2=2^3-2^3=0\) => D=0
a) 7x - 2x = 617 : 615 + 44
=> 5x = 36 + 44
=> 5x = 80
=> x = 80 : 5 = 16
b) 9x - 1 = 18 + 1/9 - 1/9 - 9
=> 9x - 1 = 9
=> x - 1 = 1
=> x = 1 + 1 = 2
c) [(6x - 39) : 7] . 4 = 12
=> (6x - 39) : 7 = 12 : 4
=> (6x - 39) : 7 = 3
=> 6x - 39 = 3.7
=> 6x - 39 = 21
=> 6x = 21 + 39
=> 6x = 60
=> x = 60 : 6
=> x = 10
d) 2 - (x - 1) - 3x = 20
=> 2 - x + 1 - 3x = 20
=> 3 - 4x = 20
=> 4x = 3 - 20
=> 4x = -17
=> x = -17 : 4 = -17/4
e) 2|x - 3| + 7 = 56 : 52
=> 2|x - 3| + 7 = 625
=> 2|x - 3| = 625 - 7
=> 2|x - 3| = 618
=> |x - 3| = 618 : 2
=> |x - 3| = 309
=> \(\orbr{\begin{cases}x-3=309\\x-3=-309\end{cases}}\)
=> \(\orbr{\begin{cases}x=312\\x=-306\end{cases}}\)
Bài làm
Ta có: P = x3 + x2y - 2x2 - xy - y2 + 3y + x + 2017
P = x3 + x2y - 2x2 - xy - y2 + 2y + y + x + 2017
P = ( x3 + x2y − 2x2 ) − ( xy + y2 − 2y ) + ( x + y − 2 ) + 2019
P = x2( x + y − 2 ) − y( x + y − 2 ) + ( x + y − 2 ) + 2019
Mà x + y = 2 => x + y - 2 = 0
Thay x + y - 2 = 0 và đa thức P, ta được:
P = x2 . 0 - y . 0 + 0 + 2019
P = 0 - 0 + 0 + 2019
P = 2019
Vậy P = 2019 tại x + y = 2
# Học tốt #
Ta có: \(x^{1890};y^{2020}>0\) với mọi x; y khác 0
a) \(\left(19t+\frac{5}{t}\right)x^{1890}y^{2020}\) dương với mọi x ; y khác 0
khi \(19t+\frac{5}{t}>0\)
<=> \(\frac{19t^2+5}{t}>0\)
<=> t > 0
vì 19t^2 + 5 > 0 với mọi t
b) \(\left(19t+\frac{5}{t}\right)x^{1890}y^{2020}\) âm với mọi x ; y khác 0
khi \(19t+\frac{5}{t}< 0\)
<=> \(\frac{19t^2+5}{t}< 0\)
<=> t < 0
vì 19t^2 + 5 > 0 với mọi t
Đkxđ : t > 0
\(\left(19t+\frac{5}{t}\right)x^{1890}y^{2020}\)
a) Ta có : \(x^{1890}\ge0\forall x\); \(y^{2020}\ge0\forall y\)
Để đơn thức dương => \(19t+\frac{5}{t}>0\)
=> t > 0
=> t thuộc N*
b) Ta có :\(x^{1890}\ge0\forall x\); \(y^{2020}\ge0\forall y\)
Để đơn thức âm => \(19t+\frac{5}{t}< 0\)
=> t < 0
=> t thuộc Z
a) \(TH1:x-3\ge0\Rightarrow x\ge3\)
\(\Rightarrow|x-3|=x-3\)
Thay vào biểu thức ban đầu , ta được :
\(12-\left(x-3\right)=5x-8\)
\(\Rightarrow12-x+3=5x-8\)
\(\Rightarrow15-x=5x-8\)
\(\Rightarrow5x+x=15+8\)
\(\Rightarrow6x=23\)\(\Rightarrow x=\frac{23}{6}\ge3\)( thoả mãn )
\(TH2:x-3< 3\Rightarrow x< 3\)
\(\Rightarrow|x-3|=-\left(x-3\right)=-x+3=3-x\)
Thay vào biểu thức ban đầu , ta được
\(12-\left(3-x\right)=5x-8\)
\(\Rightarrow12-3+x=5x-8\)
\(\Rightarrow9+x=5x-8\)
\(\Rightarrow5x-x=9+8\)
\(\Rightarrow4x=17\)
\(\Rightarrow x=\frac{17}{4}\)( loại )
Vậy \(x=\frac{17}{4}\)
b) \(\Rightarrow4.3^{2x}-2.3^{2x}=54\)
\(\Rightarrow3^{2x}.\left(4-2\right)=54\)
\(\Rightarrow3^{2x}.2=54\)
\(\Rightarrow3^{2x}=27=3^3\)
\(\Rightarrow2x=3\)
\(\Rightarrow x=\frac{3}{2}\)
Vậy \(x=\frac{3}{2}\)
Ta có: \(5^x+25\cdot5^{x+1}-125\cdot5^{x+2}=-74975\)
\(\Leftrightarrow5^x+25\cdot5^x\cdot5-125\cdot25\cdot5^x=-74975\)
\(\Leftrightarrow5^x\cdot\left(1+125-3125\right)=-74975\)
\(\Leftrightarrow5^x=25\)
hay x=2
Vậy: x=2