Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
\(a,\Rightarrow x=\left(3,25\right):\left(0,15\right)\cdot\left(-1,2\right)=-26\\ b,\Rightarrow\left|3-2x\right|=4\Rightarrow\left[{}\begin{matrix}3-2x=4\\2x-3=4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{7}{2}\end{matrix}\right.\)
\(c,\) Áp dụng t/c dtsbn:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{4}=\dfrac{x+3y-2z}{3+15-8}=\dfrac{20}{10}=2\\ \Rightarrow\left\{{}\begin{matrix}x=6\\y=10\\z=8\end{matrix}\right.\)
\(d,\dfrac{x}{y}=\dfrac{5}{2}\Rightarrow\dfrac{x}{5}=\dfrac{y}{2};\dfrac{y}{z}=\dfrac{1}{3}\Rightarrow\dfrac{y}{1}=\dfrac{z}{3}\Rightarrow\dfrac{y}{2}=\dfrac{z}{6}\\ \Rightarrow\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{z}{6}\)
Đặt \(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{z}{6}=k\Rightarrow x=5k;y=2k;z=6k\)
\(x^2-y^2+2z^2=372\\ \Rightarrow25k^2-4k^2+72k^2=372\\ \Rightarrow93k^2=372\Rightarrow k^2=4\\ \Rightarrow\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=10;y=4;z=12\\x=-10;y=-4;z=-12\end{matrix}\right.\)
Gọi chiều dài là a(m)
=> Chiều dài là \(\dfrac{5400}{a}\left(m\right)\)
Theo đề bài ta có: \(\dfrac{5400}{a}:a=\dfrac{3}{2}\)
\(\Rightarrow\dfrac{5400}{a^2}=\dfrac{3}{2}\)
\(\Rightarrow a^2=3600\Rightarrow a=60\left(m\right)\)
Vậy chiều rộng là 60m, chiều dài là \(\dfrac{5400}{a}=\dfrac{5400}{60}=90\left(m\right)\)
Chu vi hình chữ nhật là: \(\left(90+60\right).2=300\left(m\right)\)
Bài 13:
góc A=180-80-30=70 độ
=>góc BAD=góc CAD=70/2=35 độ
góc ADC=80+35=115 độ
góc ADB=180-115=65 độ
Bài 14:
Xét ΔABC vuông tại A
-> \(\widehat{B}\)\(+ \widehat{C}=90^o\)
Mà \(\widehat{B}=\widehat{C}\)
=> \(2\widehat{B}=90^o\)
=> \(\widehat{B}=45^o\)
Bài 2:
a: \(f\left(x\right)=-9x^3-2x^2+6x-3\)
\(G\left(x\right)=9x^3-6x+53\)
b: \(H\left(x\right)=9x^3-6x+53-9x^3-2x^2+6x-3=-2x^2+50\)
c: Đặt H(x)=0
=>2x2-50=0
=>x=5 hoặc x=-5
a) Xét ∆ ABM(<A=90°(gt)) và ∆NDM(<N=90°(gt)), ta có:
<BMA=<DMN( đối đỉnh)
BM=DM(gt)
⟹∆ABM=∆NDM(c.h=g.n)
b) Ta có:
<ABM=<MDN(Vì ∆ABM=∆NDM(CM ở a))
mà <ABM=<CBM(gt)
⟹<MDN=<CBM
⟹∆EBD cân tại E
⟹ BE=DE
c)Áp dụng định lý Py-ta-go vào ∆ABC(<A=90°(gt)), ta có:
BC2=AB2+AC2
⟹AB2=BC2-AC2=152-122=225-144=81
⟹AB=√81=9cm
mà AB=DN(Vì ∆ABM=∆NDM(CM ở a))
⟹AB=DN=9cm
\(5,\\ a,\left\{{}\begin{matrix}AB=CD\left(gt\right)\\AD=BC\left(gt\right)\\AC.chung\end{matrix}\right.\Rightarrow\Delta ABC=\Delta CDA\left(c.c.c\right)\\ b,\Delta ABC=\Delta CDA\left(cm.trên\right)\\ \Rightarrow\left\{{}\begin{matrix}\widehat{CAB}=\widehat{DCA}\\\widehat{CAD}=\widehat{ACB}\end{matrix}\right.\left(các.cặp.góc.tương.ứng\right)\)
Mà các cặp góc này ở vị trí so le trong nên \(AB//CD;AD//BC\)
a: |x|=5,6
=>\(\left[{}\begin{matrix}x=5,6\\x=-5,6\end{matrix}\right.\)
c: \(\left|x\right|=3\dfrac{1}{5}\)
=>\(\left|x\right|=3,2\)
=>\(\left[{}\begin{matrix}x=3,2\\x=-3,2\end{matrix}\right.\)
d: |x|=-2,1
mà -2,1<0
nên \(x\in\varnothing\)
d: |x-3,5|=5
=>\(\left[{}\begin{matrix}x-3,5=5\\x-3,5=-5\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=8,5\\x=-1,5\end{matrix}\right.\)
e: \(\left|x+\dfrac{3}{4}\right|-\dfrac{1}{2}=0\)
=>\(\left|x+\dfrac{3}{4}\right|=\dfrac{1}{2}\)
=>\(\left[{}\begin{matrix}x+\dfrac{3}{4}=\dfrac{1}{2}\\x+\dfrac{3}{4}=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{4}\\x=-\dfrac{5}{4}\end{matrix}\right.\)
f: \(\left|4x\right|-\left|-13,5\right|=\left|2\dfrac{1}{4}\right|\)
=>\(4\left|x\right|=2,25+13,5=15,75\)
=>\(\left|x\right|=\dfrac{63}{16}\)
=>\(x=\pm\dfrac{63}{16}\)
g: \(\dfrac{5}{6}-\left|2-x\right|=\dfrac{1}{3}\)
=>\(\dfrac{5}{6}-\left|x-2\right|=\dfrac{1}{3}\)
=>\(\left|x-2\right|=\dfrac{5}{6}-\dfrac{1}{3}=\dfrac{1}{2}\)
=>\(\left[{}\begin{matrix}x-2=\dfrac{1}{2}\\x-2=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\)
h: \(\left|x-\dfrac{2}{5}\right|+\dfrac{1}{2}=\dfrac{3}{4}\)
=>\(\left|x-\dfrac{2}{5}\right|=\dfrac{3}{4}-\dfrac{1}{2}=\dfrac{1}{4}\)
=>\(\left[{}\begin{matrix}x-\dfrac{2}{5}=\dfrac{1}{4}\\x-\dfrac{2}{5}=-\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}+\dfrac{2}{5}=\dfrac{13}{20}\\x=-\dfrac{1}{4}+\dfrac{2}{5}=\dfrac{-5+8}{20}=\dfrac{3}{20}\end{matrix}\right.\)
i: \(\left|5-3x\right|+\dfrac{2}{3}=\dfrac{1}{6}\)
=>\(\left|3x-5\right|=\dfrac{1}{6}-\dfrac{2}{3}=\dfrac{1}{6}-\dfrac{4}{6}=-\dfrac{3}{6}=-\dfrac{1}{2}< 0\)
=>\(x\in\varnothing\)
k: \(-2,5+\left|3x+5\right|=-1,5\)
=>|3x+5|=-1,5+2,5=1
=>\(\left[{}\begin{matrix}3x+5=1\\3x+5=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-4\\3x=-6\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=-\dfrac{4}{3}\\x=-2\end{matrix}\right.\)
m: \(\dfrac{1}{5}-\left|\dfrac{1}{5}-x\right|=\dfrac{1}{5}\)
=>\(\left|\dfrac{1}{5}-x\right|=\dfrac{1}{5}-\dfrac{1}{5}=0\)
=>\(\dfrac{1}{5}-x=0\)
=>\(x=\dfrac{1}{5}\)
n: \(-\dfrac{22}{15}x+\dfrac{1}{3}=\left|-\dfrac{2}{3}+\dfrac{1}{5}\right|\)
=>\(-\dfrac{22}{15}x+\dfrac{1}{3}=\dfrac{2}{3}-\dfrac{1}{5}\)
=>\(-\dfrac{22}{15}x=\dfrac{1}{3}-\dfrac{1}{5}=\dfrac{2}{15}\)
=>-22x=2
=>\(x=-\dfrac{1}{11}\)
3.15:
EF vuông góc MH
NP vuông góc MH
Do đó: EF//NP
3.17:
góc yKH+góc H=180 độ
mà hai góc này là hai góc ở vị trí trong cùng phía
nên Ky//Hx
Lời giải:
a.
Xét tam giác $ABH$ và $ACH$ có:
$AH$ chung
$\widehat{AHB}=\widehat{AHC}=90^0$
$AB=AC$ (do $ABC$ cân tại $A$)
$\Rightarrow \triangle ABH=\triangle ACH$ (ch-cgv)
b.
Xét tam giác $AHM$ và $NBM$ có:
$AM=NM$
$HM=BM$
$\widehat{AMH}=\widehat{NMB}$ (đối đỉnh)
$\Rightarrow \triangle AHM=\triangle NBM$ (c.g.c)
$\Rightarrow \widehat{NBM}=\widehat{AHM}=90^0$
$\Rightarrow NB\perp BM$ hay $NB\perp BC$
c.
Từ tam giác bằng nhau phần b suy ra $BN=AH$. Mà $AH< AB$ (trong tam giác vuông cạnh huyền là lớn nhất)
$\Rightarrow BN< AB$
$\Rightarrow \widehat{BAN}< \widehat{BNA}$
d.
Gọi $T$ là giao điểm của $NH$ và $AC$
Dễ thấy $\triangle BAM=\triangle HNM$ (c.g.c)
$\Rightarrow \widehat{BAM}=\widehat{HNM}$
Mà 2 góc này ở vị trí so le trong nên $HN\parallel AB$
Hay $NT\parallel AB$
$\Rightarrow \widehat{BAH}=\widehat{H_1}$
Mà $\widehat{BAH}=\widehat{A_2}$ (do $\triangle ABH=\triangle ACH$)
$\Rightarrow \widehat{H_1}=\widehat{A_2}$
$\Rightarrow \triangle ATH$ cân tại $T$
$\Rightarrow AT=TH(1)$
Lại có:
$\widehat{H_1}=\widehat{A_2}$
$\Rightarrow 90^0-\widehat{H_1}=90^0-\widehat{A_2}$
$\Rightarrow \widehat{H_2}=\widehat{C_1}$
$\Rightarrow THC$ cân tại $T$
$\Rightarrow TH=TC(2)$
Từ $(1); (2)\Rightarrow AT=TC\Rightarrow T$ là trung điểm $AC$
$\Rightarrow T\equiv K$
$\Rightarrow N,H,K$ thẳng hàng.
Hình vẽ: