K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: 

a: \(f\left(x\right)=-9x^3-2x^2+6x-3\)

\(G\left(x\right)=9x^3-6x+53\)

b: \(H\left(x\right)=9x^3-6x+53-9x^3-2x^2+6x-3=-2x^2+50\)

c: Đặt H(x)=0

=>2x2-50=0

=>x=5 hoặc x=-5

Bài 5: 

d: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y-z}{2+3-4}=\dfrac{-20}{1}=-20\)

Do đó: x=-40; y=-60; z=-80

2:

a: Xét ΔABD và ΔACD có

AB=AC

BD=CD

AD chung

=>ΔABD=ΔACD

b: ΔABD=ΔACD

=>góc ADB=góc ADC=180/2=90 độ

=>AD vuông góc BC

c: BC=12

=>BD=CD=6

AD=căn 10^2-6^2=8

d: BN=AB/2

CM=AC/2

mà AB=AC

nên BN=CM

Xét ΔNBC và ΔMCB có

NB=MC

góc NBC=góc MCB

BC chung

=>ΔNBC=ΔMCB

=>NC=BM

e: Xét ΔABC có

BM,CN là trung tuyến

BM cắt CN tại G

=>G là trọng tâm

=>A,G,D thẳng hàng và AG=2/3AD=16/3

 

10 tháng 10 2021

em dag cần gấp mng giúp em với ????

a: AC=12cm

Xét ΔABC có AB<AC<BC

nên \(\widehat{C}< \widehat{B}< \widehat{A}\)

b: Xét ΔABC vuông tại A và ΔAEC vuông tại A có 

AB=AE

AC chung

Do đó: ΔABC=ΔAEC

c: Xét ΔCEB có 

CA là đường trung tuyến

BH là đường trung tuyến

CA cắt BH tại M

Do đó: M là trọng tâm của ΔCEB

20 tháng 8 2021

đề bài đâu bạn

15 tháng 2 2020

Ta có: \(\frac{x+2}{y+10}\)\(=\)\(\frac{1}{5}\)\(\Rightarrow\)\(5\left(x+2\right)=y+10\)(1)

             \(y-3x=2\)\(\Rightarrow\)\(y+2=3x\)                              (2)

Thay (2) vào (1) ta có:

\(5\left(x+2\right)=\left(y+2\right)+8\)

\(5x+10=3x+8\)

\(5x-3x=8-10\)

\(2x=-2\)

\(x=-2:2\)

\(x=-1\)

Vậy: x=-1

Chúc bạn làm bài tốt!

18 tháng 5 2022

a,

Ta có :

2BD = BC

=> 2BD = 6

=> BD = 3 (cm)

Ta có :

Δ ABC cân tại A

AD là đường trung trực

=> AD là đường cao

=> AD là đường trung tuyến

Xét Δ ADB vuông tại D, có :

\(AB^2=AD^2+BD^2\) (Py - ta - go)

=> \(6^2=AD^2+3^2\)

=> \(27=AD^2\)

=> AD = 5,1 (cm)

18 tháng 5 2022

b,

Xét Δ ABG và Δ ACG, có :

AG là cạnh chung

AB = AC (Δ ABC cân tại A)

\(\widehat{BAG}=\widehat{CAG}\) (AD là tia phân giác \(\widehat{BAC}\))

=> Δ ABG = Δ ACG (c.g.c)

=> \(\widehat{ABG}=\widehat{ACG}\)

c,

Ta có :

G là trọng tâm

Mà AD là đường trung trực

=> A,G,D thẳng hàng

d,

Điều cần chứng minh : BC + 2AD > AB + AC

Ta có :

BC = 6 (cm)

AD = 5,1 (cm)

AB = AC = 5 (cm)

Thế số :

6 + 2. 5,1 > 5 + 5

=> 16,2 > 10

=> BC + 2AD > AB + AC (đpcm)

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

Do đó: ΔABH=ΔACH

Suy ra: BH=CH và \(\widehat{BAH}=\widehat{CAH}\)

b: \(BH=\sqrt{5^2-4^2}=3\left(cm\right)\)

d: XétΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

\(\widehat{DAH}=\widehat{EAH}\)

Do đó: ΔADH=ΔAEH

Suy ra: AD=AE
hay ΔADE cân tạiA

19 tháng 5 2022

undefined

\(\text{a)Xét }\Delta ABH\text{ và }\Delta ACH\text{ có:}\)

\(\left\{{}\begin{matrix}AH\text{ chung}\\AB=AC=5cm\left(gt\right)\\\widehat{B}=\widehat{C}\left(\Delta ABC\text{ cân tại A}\right)\end{matrix}\right.\)

\(\Rightarrow\Delta ABH=\Delta ACH\left(c-g-c\right)\)

\(\Rightarrow BH=CH\left(\text{hai cạnh tương ứng}\right)\)

\(\Rightarrow\widehat{BAH}=\widehat{CAH}\left(\text{hai góc tương ứng}\right)\)

\(\text{b)Xét }\Delta BAH\text{ vuông tại H có:}\)

\(AB^2=AH^2+BH^2\left(\text{định lí Py ta go}\right)\)

\(\Rightarrow BH^2=AB^2-AH^2\)

\(\Rightarrow BH^2=5^2-4^2=25-16=9\left(cm\right)\)

\(\Rightarrow BH=\sqrt{9}=3\left(cm\right)\)

\(\text{d)Xét }\Delta ADH\text{ và }\Delta AEH\text{ có:}\)

\(\left\{{}\begin{matrix}AH\text{ chung}\\\widehat{ADH}=\widehat{AEH}=90^0\left(gt\right)\\\widehat{DAH}=\widehat{EAH}\left(cmt\right)\end{matrix}\right.\)

\(\Rightarrow\Delta ADH=\Delta AEH\left(g-c-g\right)\)

\(\Rightarrow AD=AE\left(\text{hai cạnh tương ứng}\right)\)

\(\Rightarrow\Delta ADE\text{ cân tại A}\)