K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2023

Đề yêu cầu gì em, thu gọn đa thức hả?

20 tháng 6 2023

\(e,=6x^2-3x+2x-1+9x+12-6x^2-8x\\ =\left(6x^2-6x^2\right)+\left(-3x+2x+9x-8x\right)+\left(-1+12\right)\\ =11\\ g,=\left(3x-3\right)\left(x-2\right)-\left(3x^2+x\right)\left(1-x\right)\\ =3x^2-3x-6x+6-\left(3x^2+x-3x^3-x^2\right)\\ =3x^2-9x+6+3x^3-2x^2-x\\ =3x^3+x^2-10x+6\)

8 tháng 9 2021

\(e,\left(x-2\right)^2-16=0\\ \Leftrightarrow\left(x-6\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=6\\x=-2\end{matrix}\right.\\ f,x^2-5x-14=0\\ \Leftrightarrow\left(x-7\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ g,8x\left(x-3\right)+x-3=0\\ \Leftrightarrow\left(8x+1\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{8}\\x=3\end{matrix}\right.\)

8 tháng 9 2021

e)\(\left(x-2-4\right)\left(x-2+4\right)=\left(x-6\right)\left(x+2\right)\)

f)\(x^2-5x-14=x^2-2.\dfrac{5}{2}x+\dfrac{25}{2}+\dfrac{3}{2}=\left(x-\dfrac{5}{2}\right)^2+\dfrac{3}{2}\)

11 tháng 12 2023

b: ĐKXĐ: x<>-3

\(\dfrac{3x+x^2}{x^2+x+1}\cdot\dfrac{3x^3-3}{x+3}\)

\(=\dfrac{x\left(x+3\right)}{x^2+x+1}\cdot\dfrac{3\left(x^3-1\right)}{x+3}\)

\(=\dfrac{3x\left(x-1\right)\left(x^2+x+1\right)}{x^2+x+1}=3x\left(x-1\right)\)

e: ĐKXĐ: \(x\notin\left\{4;-5\right\}\)

\(\dfrac{2x+10}{x^3-64}:\dfrac{\left(x+5\right)^2}{2x-8}\)

\(=\dfrac{2\left(x+5\right)}{\left(x-4\right)\left(x^2+4x+16\right)}\cdot\dfrac{2x-8}{\left(x+5\right)^2}\)

\(=\dfrac{2\cdot2\left(x-4\right)}{\left(x-4\right)\left(x^2+4x+16\right)}=\dfrac{4}{x^2+4x+16}\)

 

 

13 tháng 12 2023

Sao câu e từ 1 qua 2 nó ra như v v ạ e chưa hiểu ạ

30 tháng 6 2023

a) \(\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)

\(=\left(2x+3\right)\left[\left(2x\right)^2-2x\cdot3+3^2\right]-2\left(4x^3-1\right)\)

\(=\left[\left(2x\right)^3+3^3\right]-2\left(4x^3-1\right)\)

\(=\left(8x^3+27\right)-8x^3+2\)

\(=8x^3+27-8x^3+2\)

\(=29\)

Vậy: ....

c) \(2\left(x^3+y^3\right)-3\left(x^3+y^3\right)\)

\(=2\left(x+y\right)\left(x^2-xy+y^2\right)-3x^2-3y^2\)

\(=2\left(x^2-xy+y^2\right)\cdot1-3x^2-3y^2\)

\(=2x^2-2xy+2y^2-3x^2-3y^2\)

\(=-x^2-2xy-y^2\)
\(=-\left(x^2+2xy+y^2\right)\)

\(=-\left(x+y\right)^2\)

\(=-\left(1\right)^2=-1\)

Vậy: ...

9 tháng 5 2023

Câu 9

a) 3(x - 2)(x + 2) < 3x² + x

⇔ 3(x² - 4) - 3x² - x < 0

⇔ 3x² - 12 - 3x² - x < 0

⇔ -x < 12

⇔ x > -12

Vậy S = {x | x > -12}

loading...  

b) 6 + 2x ≥ 3 - x

⇔ 2x + x ≥  3 - 6

⇔ 3x ≥ -3

⇔ x ≥ -1

Vậy S = {x | x ≥ -1}

loading...  

c) (x + 6)/4 - (x - 2)/6 < (x + 1)/3

⇔ 3(x + 6) - 2(x - 2) < 4(x + 1)

⇔ 3x + 18 - 2x + 4 < 4x + 4

⇔ 3x - 2x - 4x < 4 - 18 - 4

⇔ -3x < -18

⇔ x > 6

Vậy S = {x | x > 6}

loading...  

14 tháng 10 2023

d) \(\dfrac{1}{x^4y^6z};\dfrac{2}{3x^2y^7z^2};\dfrac{3}{4x^5y}\)

Mẫu thức chung: \(12x^5y^7z^2\)

Quy đồng mẫu thức các phân thức ta được:

\(\dfrac{12xyz}{12x^5y^7z^2};\dfrac{8x^3}{12x^5y^7z^2};\dfrac{9y^6z^2}{12x^5y^7z^2}\)

14 tháng 10 2023

Em cảm ơn ạ 😍💞

26 tháng 4 2022

Câu e,d à bạn

 

AH
Akai Haruma
Giáo viên
15 tháng 7 2023

Lời giải:

a.

$-A=x^2-2x=(x^2-2x+1)-1=(x-1)^2-1\geq 0-1=-1$ (do $(x-1)^2\geq 0$ với mọi $x$)

$\Rightarrow A\leq 1$

Vậy $A_{\max}=1$. Giá trị này đạt tại $x=1$
b.

$-B=9x^2+6x-19=(9x^2+6x+1)-20=(3x+1)^2-20\geq 0-20=-20$

$\Rightarrow B\leq 20$ 

Vậy $B_{\max}=20$. Giá trị này đạt tại $3x+1=0\Leftrightarrow x=\frac{-1}{3}$

c.

$-C=3x^2-12x=3(x^2-4x)=3(x^2-4x+4)-12=3(x-2)^2-12\geq 3.0-12=-12$

$\Rightarrow C\leq 12$

Vậy $C_{\max}=12$. Giá trị này đạt tại $x-2=0\Leftrightarrow x=2$
d.

$-D=y^2-5y+4=(y^2-5y+2,5^2)-2,25=(y-2,5)^2-2,25\geq -2,25$

$\Rightarrow D\leq 2,25$

Vậy $D_{\max}=2,25$

Giá trị này đạt tại $y-2,5=0\Leftrightarrow y=2,5$

e.

$-E=3y^2-4y+7=3(y^2-\frac{4}{3}y)+7$

$=3[y^2-\frac{4}{3}y+(\frac{2}{3})^2]+\frac{17}{3}=3(y-\frac{2}{3})^2+\frac{17}{3}\geq \frac{17}{3}$

$\Rightarrow E\leq \frac{-17}{3}$

Vậy $E_{\max}=\frac{-17}{3}$ khi $y-\frac{2}{3}=0\Leftrightarrow y=\frac{2}{3}$

13 tháng 6 2023

\(a,2x^3-6x^2-2x\left(x^2-3x+2\right)\)

\(=2x^3-6x^2-2x^3+6x^2-4x\)

\(=\left(2x^3-2x^3\right)+\left(-6x^2+6x^2\right)-4x\)

\(=0+0-4x\)

\(=-4x\)

\(b,-6x^2\left(3x-1\right)+2x\left(9x^2+5x\right)\)

\(=-18x^3+6x^2+18x^3+10x^2\)

\(=\left(-18x^3+18x^3\right)+\left(6x^2+10x^2\right)\)

\(=0+16x^2\)

\(=16x^2\)

13 tháng 6 2023

a. \(2x^3-6x^2-2x\left(x^2-3x+2\right)\\ =2x^3-6x^2-2x^3+6x^2-4x\\ =-4x\)

b. \(-6x^2\left(3x-1\right)+2x\left(9x^2+5x\right)\\ =-18x^3+6x^2+18x^3+10x^2\\ =6x^2+10x^2\\ =16x^2\)

`@` `\text {Ans}`

`\downarrow`

`b,`

\(B=x^6 - 20x^5 - 20x^4 - 20x^3 - 20x^2 - 20x + 3\) tại `x=21`

Ta có: `20 = 21 - 1 => 20 = x-1`

Thay `20 = x-1` vào, ta có:

\(x^6-\left(x-1\right)x^5-\left(x-1\right)x^4-\left(x-1\right)x^3-\left(x-1\right)x^2-\left(x-1\right)x+3\)

`=`\(x^6-x^6+x^5-x^5+x^4-x^4+...+x+3\)

`=`\(x+3\)

`=`\(21+3=24\)

Vậy, `B=24`

`c,`

`C=`\(x^7-26x^6+27x^5-47x^4-77x^3+50x^2+x-24\) tại `x=25`

`=`\(x^7-25x^6-x^6+25x^5+2x^5-50x^4+3x^4-75x^3-2x^3+50x^2+x-24\)

`=`\(x^6\left(x-25\right)-x^5\left(x-25\right)+2x^4\left(x-25\right)+3x^3\left(x-25\right)-2x^2\left(x-25\right)+x-24\)

`=`\(\left(x^6-x^5+2x^4+3x^3-2x^2\right)\left(x-25\right)+x-24\)

Thay `x=25` vào bt C, ta được:

\(\left(25^6-25^5+2\cdot25^4+3\cdot25^3-2\cdot25^2\right)\left(25-25\right)+25-24\)

`=`\(\left(25^6-25^5+2\cdot25^4+3\cdot25^3-2\cdot25^2\right)\cdot0+1\)

`= 0+1=1`

Vậy, `C=1.`