Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do E thuộc Ox nên tọa độ có dạng: \(E\left(x;0\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{EA}=\left(-1-x;2\right)\\\overrightarrow{EB}=\left(2-x;1\right)\\\overrightarrow{EC}=\left(6-x;-5\right)\end{matrix}\right.\)
\(\Rightarrow\overrightarrow{EA}+\overrightarrow{EB}+\overrightarrow{EC}=\left(7-3x;-2\right)\)
\(\Rightarrow\left|\overrightarrow{EA}+\overrightarrow{EB}+\overrightarrow{EC}\right|=\sqrt{\left(7-3x\right)^2+\left(-2\right)^2}\ge\sqrt{\left(-2\right)^2}=2\)
Dấu "=" xảy ra khi \(7-3x=0\Rightarrow x=\dfrac{7}{3}\)
\(\Rightarrow E\left(\dfrac{7}{3};0\right)\)
Lời giải:
Vì đt $y=ax+b$ đi qua $H(-2;5)$ nên:
$y_H=ax_H+b$
$\Leftrightarrow 5=-2a+b(1)$
Hệ số góc $a=k=-1,5(2)$
Từ $(1); (2)\Rightarrow b=5+2a=5+2.(-1,5)=2$
Vậy đths có pt $y=-1,5x+2$
3.
\(A\cap\varnothing=\varnothing\) nên C sai
4.
Tập A có 3 phần tử nên có \(2^3=8\) tập con
Đặt y = f(x) = - 2x2 có đồ thị (C)
và y = g(x) = - 2x2 - 6x + 3 có đồ thị (C')
Ta có :
g(x) = - 2x2 - 6x + 3
= - 2\(\left(x^2+3x-\dfrac{3}{2}\right)\)
= - 2\(\left(x+\dfrac{3}{2}\right)^2\) + \(\dfrac{15}{2}\)
= \(f\left(x+\dfrac{3}{2}\right)+\dfrac{15}{2}\)
Vậy tịnh tiến (C) sang trái \(\dfrac{3}{2}\) đơn vị rồi kéo (C) lên trên \(\dfrac{15}{4}\) đơn vị ta được (C')
a, Ta có : \(\sin^2x+\cos^2x=1\)
\(\Rightarrow\sin x=\sqrt{1-\cos^2x}=\left|\dfrac{\sqrt{15}}{4}\right|\)
Mà \(0< x< \dfrac{\pi}{2}\)
\(\Rightarrow\sin x=\dfrac{\sqrt{15}}{4}\)
Ta lại có : \(\left\{{}\begin{matrix}\sin2x=2\sin x\cos x=\dfrac{\sqrt{15}}{8}\\\cos2x=2\cos^2x-1=-\dfrac{7}{8}\end{matrix}\right.\)
Vậy ...
c, Ta có : \(\tan2x=\dfrac{2\tan x}{1-\tan^2x}=\dfrac{4}{3}=\dfrac{\sin2x}{\cos2x}\)
- Ta có HPT : \(\left\{{}\begin{matrix}\sin^22x+\cos^22x=1\\3\sin2x-4\cos2x=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\sin2x=\left|\dfrac{4}{5}\right|\\\cos2x=\left|\dfrac{3}{5}\right|\end{matrix}\right.\)
Lại có : \(\pi< x< \dfrac{3}{2}\pi\)
\(\Rightarrow\left\{{}\begin{matrix}\sin2x=\dfrac{4}{5}\\\cos2x=\dfrac{3}{5}\end{matrix}\right.\)
Vậy ...