Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d. \(\dfrac{\pi}{2}< a;b< \pi\Rightarrow sina>0;sinb>0\)
\(sina=\sqrt{1-cos^2a}=\dfrac{4}{5}\Rightarrow tana=\dfrac{sina}{cosa}=-\dfrac{4}{3}\)
\(sinb=\sqrt{1-cos^2b}=\dfrac{5}{13}\Rightarrow tanb=-\dfrac{5}{12}\)
Vậy:
\(sin\left(a-b\right)=sina.cosb-cosa.sinb=\dfrac{4}{5}.\left(-\dfrac{12}{13}\right)-\left(-\dfrac{3}{5}\right)\left(\dfrac{5}{13}\right)=...\)
\(cos\left(a-b\right)=cosa.cosb-sina.sinb=...\) (bạn tự thay số bấm máy)
\(tan\left(a+b\right)=\dfrac{tana+tanb}{1-tana.tanb}=...\)
\(cot\left(a+b\right)=\dfrac{1}{tan\left(a+b\right)}=\dfrac{1-tana.tanb}{tana+tanb}=...\)
e.
\(0< y< \dfrac{\pi}{2}\Rightarrow cosy>0\Rightarrow cosy=\sqrt{1-sin^2y}=\dfrac{4}{5}\)
\(\Rightarrow tany=\dfrac{siny}{cosy}=\dfrac{3}{4}\)
Vậy: \(tan\left(x+y\right)=\dfrac{tanx+tany}{1-tanx.tany}=...\)
\(cot\left(x-y\right)=\dfrac{1}{tan\left(x-y\right)}=\dfrac{1+tanx.tany}{tanx-tany}=...\)
Câu 5:
\(\Leftrightarrow-x^2+7x-9+2x-9=0\)
\(\Leftrightarrow x^2-9x+18=0\)
=>x=3
=>Chọn A
12.1
Giả sử \(G=\left(m;2m-2\right)\left(m\in R\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x_H=2x_E-x_G=6-m\\y_H=2y_E-y_G=2-2m\end{matrix}\right.\)
\(\Rightarrow H=\left(6-m;2-2m\right)\)
Mà \(H\in d_2\Rightarrow6-m+2-2m+3=0\Leftrightarrow m=\dfrac{11}{3}\)
\(\Rightarrow G=\left(\dfrac{11}{3};\dfrac{16}{3}\right)\)
\(\Rightarrow\Delta:8x-y-24=0\)
12.2
Giả sử \(A=\left(m;-m-1\right)\left(m\in R\right)\)
Ta có: \(\vec{AM}=\dfrac{1}{3}\vec{MB}\)
\(\Rightarrow\left\{{}\begin{matrix}x_M-x_A=\dfrac{1}{3}\left(x_B-x_M\right)\\y_M-y_A=\dfrac{1}{3}\left(y_B-y_M\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}1-m=\dfrac{1}{3}\left(x_B-1\right)\\m+1=\dfrac{1}{3}.y_B\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_B=4-3m\\y_B=3m+3\end{matrix}\right.\)
\(\Rightarrow B=\left(4-3m;3m+3\right)\)
Mà \(B\in d_2\Rightarrow4-3m-2\left(3m+3\right)+2=0\Leftrightarrow m=0\)
\(\Rightarrow A=\left(0;-1\right)\)
\(\Rightarrow d:x-y-1=0\)
a, Ta có : \(\sin^2x+\cos^2x=1\)
\(\Rightarrow\sin x=\sqrt{1-\cos^2x}=\left|\dfrac{\sqrt{15}}{4}\right|\)
Mà \(0< x< \dfrac{\pi}{2}\)
\(\Rightarrow\sin x=\dfrac{\sqrt{15}}{4}\)
Ta lại có : \(\left\{{}\begin{matrix}\sin2x=2\sin x\cos x=\dfrac{\sqrt{15}}{8}\\\cos2x=2\cos^2x-1=-\dfrac{7}{8}\end{matrix}\right.\)
Vậy ...
c, Ta có : \(\tan2x=\dfrac{2\tan x}{1-\tan^2x}=\dfrac{4}{3}=\dfrac{\sin2x}{\cos2x}\)
- Ta có HPT : \(\left\{{}\begin{matrix}\sin^22x+\cos^22x=1\\3\sin2x-4\cos2x=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\sin2x=\left|\dfrac{4}{5}\right|\\\cos2x=\left|\dfrac{3}{5}\right|\end{matrix}\right.\)
Lại có : \(\pi< x< \dfrac{3}{2}\pi\)
\(\Rightarrow\left\{{}\begin{matrix}\sin2x=\dfrac{4}{5}\\\cos2x=\dfrac{3}{5}\end{matrix}\right.\)
Vậy ...
\(sin\left(\dfrac{\pi}{2}-x\right)+cot^2x=cosx+\dfrac{cos^2x}{sin^2x}=cosx+\dfrac{cos^2x}{1-cos^2x}=a+\dfrac{a^2}{1-a^2}\)
\(=\dfrac{-a^3+a^2+a}{1-a^2}\)
\(\Rightarrow\left\{{}\begin{matrix}m=-1\\n=1\\\end{matrix}\right.\) \(\Rightarrow P=-3\)
Câu 12:
b) mx2+2(m+3)x+m=0
(a = m; b = 2(m+3); c = m)
PT có 2 nghiệm cùng dấu ⇔ \([_{P>0}^{\Delta\ge0}\)
⇔ \([_{\dfrac{c}{a}}^{b^2-4ac}\)⇔\([_{\dfrac{m}{m}>0}^{[2\left(m+3\right)]^2-4.m.m\ge0}\)⇔\([_{1>0\left(LĐ\right)}^{4\left(m+3\right)^2-4m^2\ge0}\)⇔\(4\left(m^2+6m+9\right)-4m^2\ge0\)
⇔4m2+24m+36-4m2≥0 ⇔ 24m+36≥0⇔ m ≥ \(-\dfrac{3}{2}\)
Vậy với m ≥\(-\dfrac{3}{2}\)thì PT có 2 nghiệm cùng dấu.
10.
ĐKXĐ: \(\left\{{}\begin{matrix}2x+10\ge0\\-x-5\ge0\\-2x-7\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge-5\\x\le-5\\x\le-\dfrac{7}{2}\end{matrix}\right.\)
\(\Rightarrow\) Không tồn tại x thỏa mãn
Vậy BPT đã cho vô nghiệm
12.
\(\Leftrightarrow\dfrac{3}{x+3}-\dfrac{3x+4}{x\left(x+4\right)}\ge0\Leftrightarrow\dfrac{-x-12}{x\left(x+3\right)\left(x+4\right)}\ge0\)
\(\Rightarrow\left[{}\begin{matrix}-12\le x< -4\\-3< x< 0\end{matrix}\right.\)
\(x=\left\{-12;-11;...-5;-2;-1\right\}\) có 10 số nguyên