K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 8 2021

a. 

$\widehat{C}=90^0-\widehat{B}=90^0-58^0=32^0$

$\cos B=\frac{c}{a}\Rightarrow c=a\cos B=72\cos 58^0=38,15$ (cm)

$\sin B=\frac{b}{a}\Rightarrow b=a\sin B=72\sin 58^0=61,06$ (cm)

b.

$\widehat{C}=90^0-\widehat{B}=90^0-40^0=50^0$

$\sin B=\frac{b}{a}\Rightarrow a=\frac{b}{\sin B}=\frac{20}{\sin 40^0}=31,11^0$

$\tan B=\frac{b}{c}\Rightarrow c=\frac{20}{\tan 40^0}=23,84^0$

 

AH
Akai Haruma
Giáo viên
15 tháng 8 2021

c.

$\widehat{B}=90^0-\widehat{C}=90^0-30^0=60^0$

$\tan B=\frac{b}{c}\Rightarrow c=\frac{b}{\tan B}=\frac{15}{\tan 60^0}=5\sqrt{3}$ (cm)

$\sin B=\frac{b}{a}\Rightarrow a=\frac{b}{\sin B}=\frac{15}{\sin 60^0}=10\sqrt{3}$ (cm)

d

$a=\sqrt{b^2+c^2}=\sqrt{21^2+18^2}=3\sqrt{85}$ (cm)

$\tan B=\frac{b}{c}=\frac{21}{18}=\frac{7}{6}$

$\Rightarrow \widehat{B}=49,4^0$

$\widehat{C}=90^0-\widehat{B}=40,6^0$

a: góc C=90-40=50 độ

sin C=AB/BC

=>7/BC=sin50

=>BC=9,14(cm)

=>\(AC\simeq5,88\left(cm\right)\)

b: góc B=90-30=60 độ

sin C=AB/BC

=>AB/16=1/2

=>AB=8cm

=>AC=8*căn 3(cm)

c: BC=căn 18^2+21^2=3*căn 85(cm)

tan C=AB/AC=6/7

=>góc C=41 độ

=>góc B=49 độ

d: AB=căn 13^2-12^2=5cm

sin C=AB/BC=5/13

=>góc C=23 độ

=>góc B=67 độ

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=21^2+18^2=765\)

hay \(BC=3\sqrt{85}\left(cm\right)\)

Xét ΔABC vuông tại A có 

\(\sin\widehat{ACB}=\dfrac{AB}{BC}=\dfrac{21}{3\sqrt{85}}\)

\(\Leftrightarrow\widehat{ACB}\simeq49^0\)

\(\Leftrightarrow\widehat{ABC}=41^0\)

31 tháng 7 2021

sau sin ko cần viết kí hiệu góc đâu anh

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=21^2+18^2=765\)

hay \(BC=3\sqrt{85}\left(cm\right)\)

Xét ΔABC vuông tại A có 

\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{21}{3\sqrt{85}}\)

nên \(\widehat{C}\simeq49^0\)

\(\Leftrightarrow\widehat{B}=41^0\)

a) Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{B}+\widehat{C}=90^0\)

hay \(\widehat{C}=50^0\)

Xét ΔABC vuông tại A có 

\(AB=BC\cdot\sin\widehat{C}\)

\(\Leftrightarrow AB=20\cdot\sin50^0\)

hay \(AB\simeq15,32\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=20^2-15.32^2=165.2976\)

hay \(AC\simeq12,86\left(cm\right)\)

a) Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{B}+\widehat{C}=90^0\)

hay \(\widehat{B}=60^0\)

Xét ΔABC vuông tại A có 

\(AB=AC\cdot\tan30^0\)

\(\Leftrightarrow AB=10\cdot\dfrac{\sqrt{3}}{3}=\dfrac{10\sqrt{3}}{3}\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=10^2+\left(\dfrac{10\sqrt{3}}{3}\right)^2=\dfrac{400}{3}\)

hay \(BC=\dfrac{20\sqrt{3}}{3}\left(cm\right)\)