Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
$\widehat{C}=90^0-\widehat{B}=90^0-58^0=32^0$
$\cos B=\frac{c}{a}\Rightarrow c=a\cos B=72\cos 58^0=38,15$ (cm)
$\sin B=\frac{b}{a}\Rightarrow b=a\sin B=72\sin 58^0=61,06$ (cm)
b.
$\widehat{C}=90^0-\widehat{B}=90^0-40^0=50^0$
$\sin B=\frac{b}{a}\Rightarrow a=\frac{b}{\sin B}=\frac{20}{\sin 40^0}=31,11^0$
$\tan B=\frac{b}{c}\Rightarrow c=\frac{20}{\tan 40^0}=23,84^0$
c.
$\widehat{B}=90^0-\widehat{C}=90^0-30^0=60^0$
$\tan B=\frac{b}{c}\Rightarrow c=\frac{b}{\tan B}=\frac{15}{\tan 60^0}=5\sqrt{3}$ (cm)
$\sin B=\frac{b}{a}\Rightarrow a=\frac{b}{\sin B}=\frac{15}{\sin 60^0}=10\sqrt{3}$ (cm)
d
$a=\sqrt{b^2+c^2}=\sqrt{21^2+18^2}=3\sqrt{85}$ (cm)
$\tan B=\frac{b}{c}=\frac{21}{18}=\frac{7}{6}$
$\Rightarrow \widehat{B}=49,4^0$
$\widehat{C}=90^0-\widehat{B}=40,6^0$
a: góc C=90-40=50 độ
sin C=AB/BC
=>7/BC=sin50
=>BC=9,14(cm)
=>\(AC\simeq5,88\left(cm\right)\)
b: góc B=90-30=60 độ
sin C=AB/BC
=>AB/16=1/2
=>AB=8cm
=>AC=8*căn 3(cm)
c: BC=căn 18^2+21^2=3*căn 85(cm)
tan C=AB/AC=6/7
=>góc C=41 độ
=>góc B=49 độ
d: AB=căn 13^2-12^2=5cm
sin C=AB/BC=5/13
=>góc C=23 độ
=>góc B=67 độ
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=21^2+18^2=765\)
hay \(BC=3\sqrt{85}\left(cm\right)\)
Xét ΔABC vuông tại A có
\(\sin\widehat{ACB}=\dfrac{AB}{BC}=\dfrac{21}{3\sqrt{85}}\)
\(\Leftrightarrow\widehat{ACB}\simeq49^0\)
\(\Leftrightarrow\widehat{ABC}=41^0\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=21^2+18^2=765\)
hay \(BC=3\sqrt{85}\left(cm\right)\)
Xét ΔABC vuông tại A có
\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{21}{3\sqrt{85}}\)
nên \(\widehat{C}\simeq49^0\)
\(\Leftrightarrow\widehat{B}=41^0\)
a) Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{C}=50^0\)
Xét ΔABC vuông tại A có
\(AB=BC\cdot\sin\widehat{C}\)
\(\Leftrightarrow AB=20\cdot\sin50^0\)
hay \(AB\simeq15,32\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=20^2-15.32^2=165.2976\)
hay \(AC\simeq12,86\left(cm\right)\)
a) Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{B}=60^0\)
Xét ΔABC vuông tại A có
\(AB=AC\cdot\tan30^0\)
\(\Leftrightarrow AB=10\cdot\dfrac{\sqrt{3}}{3}=\dfrac{10\sqrt{3}}{3}\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=10^2+\left(\dfrac{10\sqrt{3}}{3}\right)^2=\dfrac{400}{3}\)
hay \(BC=\dfrac{20\sqrt{3}}{3}\left(cm\right)\)
.