Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$2\times A=\frac{2}{1\times 3}+\frac{2}{3\times 5}+\frac{2}{5\times 7}+...+\frac{2}{19\times 21}$
$2\times A=\frac{3-1}{1\times 3}+\frac{5-3}{3\times 5}+\frac{7-5}{5\times 7}+...+\frac{21-19}{19\times 21}$
$=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{19}-\frac{1}{21}$
$=1-\frac{1}{21}=\frac{20}{21}$
$\Rightarrow A=\frac{20}{21}: 2= \frac{10}{21}$
sửa đề câu a và câu b nhá , mik nghĩ đề như này :
\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{213\cdot215}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{213}-\frac{1}{215}\)
= \(\frac{1}{1}-\frac{1}{215}\)
\(=\frac{214}{215}\)
b, đặt \(A=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{213\cdot215}\)
\(A\cdot2=\frac{2}{1\cdot3}+\frac{2}{3.5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{213\cdot215}\)
\(A\cdot2=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{213}-\frac{1}{215}\)
\(A\cdot2=\frac{1}{1}-\frac{1}{215}\)
\(A\cdot2=\frac{214}{215}\)
\(A=\frac{214}{215}:2\)
\(A=\frac{107}{215}\)
B=2/3x5 + 2/5x7 + 2/7x9 + ...+2/99x101
B= 1/3 - 1/5 + 1/5 - 1/7 + 1/7 -1/9 + ... + 1/99 - 1/101
B= 1/3 - 1/101
B=98/303
( k mk nhé ! Cách làm câu a và b của mk đều đúng 100% đấy ! Dạng này mk học từ lâu rồi ! )
\(\frac{1}{1x2} +(\frac{2}{3x5}+\frac{2}{5x7}+\frac{2}{7x9} +\frac{2}{9x11})\)
\(=\frac{1}{1x2} + (\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11})\)
\(=\frac{1}{1x2}+(\frac{1}{3}-\frac{1}{11})\)
\(=\frac{1}{1x2} +\frac{10}{33}\)
\(=\frac{1}{2} + \frac{10}{33} = \frac{33}{66}+\frac{20}{66}\)
\(=\frac{53}{66}\)
=(1-1/3+1/3-1/5+1/5-1/7+1/7-1/9) chia 2
=(1-1/9)chia 2
=8/9 chia 2
=4/9
A = \(\dfrac{1}{3\times5}\) + \(\dfrac{1}{5\times7}\) + \(\dfrac{1}{7\times9}\)+...+ \(\dfrac{1}{2009\times2011}\)
A = \(\dfrac{1}{2}\) \(\times\) ( \(\dfrac{2}{3\times5}\) + \(\dfrac{2}{5\times7}\)+ \(\dfrac{2}{7\times9}\)+...+ \(\dfrac{1}{2009\times2011}\))
A = \(\dfrac{1}{2}\) \(\times\) ( \(\dfrac{1}{3}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{9}\)+...+ \(\dfrac{1}{2009}\) - \(\dfrac{1}{2011}\))
A = \(\dfrac{1}{2}\) \(\times\) ( \(\dfrac{1}{3}\) - \(\dfrac{1}{2011}\))
A = \(\dfrac{1}{2}\) \(\times\) \(\dfrac{2008}{6033}\)
A = \(\dfrac{1004}{6033}\)
\(\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+\dfrac{2}{7\times9}+..+\dfrac{1}{2009\times2011}\\ =\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{2009}-\dfrac{1}{2011}\\ =\dfrac{1}{3}-\dfrac{1}{2011}\)
Đến đây bn tự tính nhé.
Đặt A = 1/3.5 + 1/5.7 + 1/7.9 + ..... + 1/99.101
=> 2A = 2/3.5 + 2/5.7 + 2/7.9 + ..... + 2/99.101
=> 2A = 1/3 - 1/5 + 1/5 - 1/7 + ..... + 1/99 - 1/101
=> 2A = 1/3 - 1/101
=> 2A = 88/303
=> A = 44/303
\(\frac{1}{3x5}+\frac{1}{5x7}+\frac{1}{7x9}+..........+\frac{1}{97x99}\)
= \(1-\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-........-\frac{1}{97}+\frac{1}{97}-\frac{1}{99}\)
= \(1-\frac{1}{3}-\frac{1}{99}\)
= \(\frac{99}{99}-\frac{33}{99}-\frac{1}{99}\)
= \(\frac{65}{99}\)
\(\frac{1}{3}\)*5+\(\frac{1}{5}\)*7+\(\frac{1}{7}\)*9*...*\(\frac{1}{97}\)*99
=\(\frac{5}{3}\)*\(\frac{7}{5}\)*\(\frac{9}{7}\)*...*\(\frac{99}{97}\)
=\(\frac{99}{3}\)
đúng thì nha