Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x-1-\sqrt{x-2004}=2005\)
\(x-1-2005=\sqrt{x-2004}\)
\(x-2006=\sqrt{x-2004}\)
\(\sqrt{x-2004}=x-2006\)
\(\hept{\begin{cases}x-2006\ge0\\x-2004=\left(x-2006\right)^2\end{cases}}\)
\(\hept{\begin{cases}x\ge2006\\x-2004=x^2-4012x+4024036\end{cases}}\)
\(\hept{\begin{cases}x\ge2006\\0=x^2-4012x-x+4024036+2004\end{cases}}\)
\(\hept{\begin{cases}x\ge2006\\x^2-4013x+4026040=0\end{cases}}\)
\(x\ge2006\)
\(\orbr{\begin{cases}x=2008\\x=2005\end{cases}}\) ( nhận 2008 )
Vậy \(x=2008\)
đk: \(x\ge2004\)
Ta có: \(x-1-\sqrt{x-2004}=2005\)
\(\Leftrightarrow x-2006=\sqrt{x-2004}\)
\(\Leftrightarrow\left(x-2006\right)^2=\left(\sqrt{x-2004}\right)^2\)
\(\Leftrightarrow x^2-4012x+4024036=x-2004\)
\(\Leftrightarrow x^2-4013x+4026040=0\)
\(\Leftrightarrow\left(x-2005\right)\left(x-2008\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2008=0\\x-2005=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2008\\x=2005\end{cases}}\)
Hoặc có thể đặt ẩn phụ \(x-2005=y\)
\(Pt\Leftrightarrow y-1=\sqrt{y+1}\)
\(\Leftrightarrow y^2-2y+1=y+1\)
\(\Leftrightarrow y^2-3y=0\)
\(\Leftrightarrow y\left(y-3\right)=0\)
\(\Leftrightarrow\left(x-2005\right)\left(x-2008\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=2005\\x=2008\end{cases}}\)
ĐK \(x\ge-2004\)
\(x^2-2004=-\sqrt{x+2004}\)
Đặt \(\sqrt{x+2004}=a\left(a\ge0\right)\)
=> \(\hept{\begin{cases}x^2-2004=-a\\a^2-2004=x\end{cases}}\)
=> \(\left(x+a\right)\left(x-a\right)+\left(a+x\right)=0\)
=> \(\left(x+a\right)\left(x-a+1\right)=0\)
=> \(\orbr{\begin{cases}x=-a\\x=a-1\end{cases}}\)
+ x=-a
=> \(x=-\sqrt{x+2004}\)
=> \(\hept{\begin{cases}x\le0\\x^2-x-2004=0\end{cases}}\)=> \(x=\frac{1-\sqrt{8017}}{2}\)(TmĐK)
+ \(x=a-1\)
=> \(x+1=-\sqrt{x+2004}\)
=> \(\hept{\begin{cases}x\le-1\\x^2+x-2003=0\end{cases}}\)=> \(x=\frac{-1-\sqrt{8013}}{2}\)(TTMĐK)
Vậy \(S=\left\{\frac{-1-\sqrt{8013}}{2};\frac{1-\sqrt{8017}}{2}\right\}\)
1. Tổng các hệ số của đa thức là: 12004.22005=22005
2.Cần chứng minh x4+x3+x2+x+1=0 vô nghiệm.
Nhận thấy x = 1 không là nghiệm của phương trình .
Nhân cả hai vế của pt cho (x−1)≠0 được :
(x−1)(x4+x3+x2+x+1)=0⇔x5−1=0⇔x=1(vô lí)
Vậy pt trên vô nghiệm.
1. Tổng các hệ số của đa thức là:
12014 . 22015 = 22015
2 . Cần chứng minh.
\(x4 + x3 + x2 + x + 1 = 0\)
Vô nghiệm.
Ta nhận thấy \(x + 1 \) không là nghiệm của phương trình.
Nhân cả hai vế của phương trình cho:
\(( x - 1 ) \) \(\ne\) \(0\) được :
\(( x-1). (x4+x3+x2+x+1)=0\)
\(\Leftrightarrow\)\(5x-1=0\) \(\Leftrightarrow\) \(x = 1\)
Vô lí.
Vậy phương trình trên vô nghiệm.
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{\sqrt{n}}{n}-\frac{\sqrt{n+1}}{n+1}\)
\(\Rightarrow S=\frac{1}{1}-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{3}+...+\frac{\sqrt{2004}}{2004}-\frac{\sqrt{2005}}{2005}\)
\(=1-\frac{\sqrt{2005}}{2005}\)
\(2+\dfrac{3\left(x+1\right)}{3}\le3-\dfrac{x-1}{4}\)
\(\Leftrightarrow2+x+1\le\dfrac{12}{4}-\dfrac{x-1}{4}\)
\(\Leftrightarrow x+3\le\dfrac{13-x}{4}\)
\(\Leftrightarrow\dfrac{4x+12}{4}\le\dfrac{13-x}{4}\)
\(\Leftrightarrow4x+12\le13-x\)
\(\Leftrightarrow4x+x\le13-12\)
\(\Leftrightarrow5x\le1\)
\(\Leftrightarrow x\le\dfrac{1}{5}\)
Vậy: \(x\le\dfrac{1}{5}\)
\(2+\dfrac{3\left(x+1\right)}{3}\le3-\dfrac{x-1}{4}\)
\(\Leftrightarrow\dfrac{12x+36}{12}\le\dfrac{33-3x}{12}\)
\(\Leftrightarrow12x+36\le33-3x\)
\(\Leftrightarrow12x+3x\le-36+33\)
\(\Leftrightarrow15x\le-3\)
\(\Leftrightarrow x\le\dfrac{-1}{5}\)
\(|x-3|^{2004}+|x-4|^{2005}=1\)
Ta có x = 3 hoặc x = 4 là nghiệm của phương trình
Nếu x < 3 thì \(|x-4|=4-x>1\).Phương trình vô nghiệm
Nếu 3 < x < 4 thì \(|x-3|< 1\)và \(|x-4|< 1\), do đó:
\(|x-3|^{2004}< |x-3|=x-3\)và \(|x-4|^{2005}< |x-4|=4-x\)
\(\Rightarrow|x-3|^{2004}+|x-4|^{2005}< x-3+4-x=1\) . Vậy phương trình vô nghiệm.
Nếu x > 4 thì \(|x-3|>1\).Phương trình vô nghiệm
Vậy phương trình có nghiệm là \(x_1=3;x_2=4\)
\(|x-3|^{2004}+|x-4|^{2005}=1\)
Dễ thấy x = 3 hoặc x = 4 là nghiệm của phương trình .
Nếu x < 3 thì \(|x-4|=4-x>1\). Phương trình vô nghiệm .
Nếu 3 < x < 4 thì \(|x-3|< 1\)và \(|x-4|< 1\),do đó
\(|x-3|^{2004}< |x-3|=x-3\)và\(\left|x-4\right|^{2005}< \left|x-4\right|=4-x\)
\(\Rightarrow\left|x-3\right|^{2004}+\left|x-4\right|^{2005}< x-3+4-x=1\). phương trình vô nghiệm
Nếu x > 4 thì \(\left|x-3\right|>1\). phương trình vô nghiệm
Kết luận : không có giá trị của x để thỏa mãn phương trình .