K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2017

\(5\left(x+2\right)-x^2-2x=0\)

\(\Rightarrow5\left(x+2\right)-\left(x^2+2x\right)=0\)

\(\Rightarrow5\left(x+2\right)-x\left(x+2\right)=0\)

\(\Rightarrow\left(5-x\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}5-x=0\\x+2=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=5\\x=-2\end{cases}}\)

5 tháng 1 2017

khó phết

21 tháng 7 2018

\(3\left(x-1\right)^2-3x\left(x-5\right)=1\)

\(\Leftrightarrow\)\(3x^2-6x+3-3x^2+15x=1\)

\(\Leftrightarrow\)\(9x=-2\)

\(\Leftrightarrow\)\(x=-\frac{2}{9}\)

Vậy...

\(x^2-2x+1=25\)

\(\Leftrightarrow\)\(x^2-2x-24=0\)

\(\Leftrightarrow\)\(\left(x+4\right)\left(x-6\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x+4=0\\x-6=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-4\\x=6\end{cases}}\)

Vậy...

Ta có: \(\dfrac{2x}{x^2-x+1}-\dfrac{x}{x^2+x+1}=\dfrac{5}{3}\)

\(\Leftrightarrow\dfrac{2x\left(x^2+x+1\right)-x\left(x^2-x+1\right)}{\left(x^2-x+1\right)\left(x^2+x+1\right)}=\dfrac{5}{3}\)

\(\Leftrightarrow\dfrac{2x^3+2x^2+2x-x^3+x^2-x}{\left(x^2-x+1\right)\left(x^2+x+1\right)}=\dfrac{5}{3}\)

\(\Leftrightarrow\dfrac{x^3+3x^2+x}{\left(x^2+1\right)^2-x^2}=\dfrac{5}{3}\)

\(\Leftrightarrow3x^3+9x^2+3x=5\left(x^4+2x^2+1-x^2\right)\)

\(\Leftrightarrow3x^3+9x^2+3x=5x^4+5x^2+5\)

\(\Leftrightarrow5x^4+5x^2+5-3x^3-9x^2-3x=0\)

\(\Leftrightarrow5x^4-3x^3-4x^2-3x+5=0\)

\(\Leftrightarrow5x^4-5x^3+2x^3-2x^2-2x^2+2x-5x+5=0\)

\(\Leftrightarrow5x^3\left(x-1\right)+2x^2\left(x-1\right)-2x\left(x-1\right)-5\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(5x^3+2x^2-2x-5\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(5x^3-5x^2+7x^2-7x+5x-5\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[5x^2\left(x-1\right)+7x\left(x-1\right)+5\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)^2\cdot\left(5x^2+7x+5\right)=0\)

mà \(5x^2+7x+5>0\forall x\)

nên x-1=0

hay x=1

6 tháng 7 2021

vì sao mà 5x2+7x+5>0?

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6 tháng 4 2017

1) tôi giải theo kt lớp 9 nhé nếu theo lp 8 thì phần tích theo đk trong gttđ
   lập bảng xét dấu  
    

x                                1
lx2-1l1-x2                                    0                           x2-1
lx-1l1-x                           0                      x-1
lx2-1l+lx-1l-x2-x+2                                         x2+x-2

với x <1  => x=1   x=-2
với x>1   >x=1      x=-2
vậy  pt có 2 ng phân bịt  x =1 và x=-2
các câu còn lại lm tương tự w nhé 
 chúc bn hc giỏi !!

6 tháng 4 2017

@trần tuấn phát giải giúp mik kiểu lớp 8 với! Mik k hỉu!

20 tháng 7 2018

\(\left(5-2x\right)^2-16=0\)

\(\Leftrightarrow\left(5-2x\right)^2-4^2=0\)

\(\Rightarrow\left(5-2x-4\right)\left(5-2x+4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}5-2x-4=0\\5-2x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}-2x=4-5\\-2x=-4-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}-2x=-1\\-2x=-9\end{cases}}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{-1}{-2}=\frac{1}{2}\\x=\frac{-9}{-2}=\frac{9}{2}\end{cases}}\)

Vậy ................................

20 tháng 7 2018

= 5^2 - 2.5.2x + (2x)\(^2\)- 16 = 0

=> x = 4,5

=4x^2-4x+1+x^3-27-4(x^2-16)

=4x^2-4x+1+x^3-27-4x^2+64

=x^3-4x+38

10 tháng 5 2021

a,\(\frac{2}{-x^2+6x-8}-\frac{x-1}{x-2}=\frac{x+3}{x-4}\left(đkxđ:x\ne2;4\right)\)

\(< =>\frac{-2}{\left(x-2\right)\left(x-4\right)}-\frac{\left(x-1\right)\left(x-4\right)}{\left(x-2\right)\left(x-4\right)}=\frac{\left(x+3\right)\left(x-2\right)}{\left(x-2\right)\left(x-4\right)}\)

\(< =>-2-\left(x^2-5x+4\right)=x^2+x-5\)

\(< =>-x^2+5x-6-x^2-x+5=0\)

\(< =>-2x^2+4x-1=0\)

\(< =>2x^2-4x+1=0\)

đến đây thì pt bậc 2 dể rồi

10 tháng 5 2021

\(\frac{2}{x^3-x^2-x+1}=\frac{3}{1-x^2}-\frac{1}{x+1}\left(đkxđ:x\ne\pm1\right)\)

\(< =>\frac{2}{x^2\left(x-1\right)-\left(x-1\right)}=\frac{3}{1-x^2}-\frac{1}{x+1}\)

\(< =>\frac{2}{\left(x^2-1\right)\left(x-1\right)}=-\frac{3}{x^2-1}-\frac{1}{x+1}\)

\(< =>\frac{2}{\left(x+1\right)\left(x-1\right)^2}=\frac{-3\left(x-1\right)}{\left(x-1\right)^2\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)^2\left(x+1\right)}\)

\(< =>2+3x-3+x^2-2x+1=0\)

\(< =>x^2+x=0< =>x\left(x+1\right)=0< =>\orbr{\begin{cases}x=-1\left(loai\right)\\x=0\left(tm\right)\end{cases}}\)