K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2017

\(\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)

đặt \(x^2+5x+5=t\)

\(\Leftrightarrow t^2-25=0\Rightarrow\left\{{}\begin{matrix}t=5\\t=-5\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

29 tháng 11 2021

bài nào ạ

29 tháng 11 2021

Mình đăng có 1 bài mà bạn hỏi bài nào là sao á.

NV
23 tháng 11 2019

a/ ĐKXĐ: \(x\ge0\)

\(\Leftrightarrow2x+9+2\sqrt{x^2+9x}=2x+5+2\sqrt{x^2+5x+4}\)

\(\Leftrightarrow\sqrt{x^2+9x}+2=\sqrt{x^2+5x+4}\)

\(\Leftrightarrow x^2+9x+4+4\sqrt{x^2+9x}=x^2+5x+4\)

\(\Leftrightarrow\sqrt{x^2+9x}=-4x\)

Do \(x\ge0\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP\le0\end{matrix}\right.\)

Dấu "=" xảy ra khi và chỉ khi \(x=0\)

b/ Lại 1 câu sai đề nữa, dễ dàng chứng minh pt này vô nghiệm:

\(\Leftrightarrow x^2-2x+4x-\sqrt{x^2-2x+24}+\frac{1}{4}+x^2+\frac{183}{4}=0\)

\(\Leftrightarrow\left(\sqrt{x^2-2x+24}-\frac{1}{2}\right)^2+x^2+\frac{183}{4}=0\)

Phương trình hiển nhiên vô nghiệm do vế trái dương

AH
Akai Haruma
Giáo viên
28 tháng 11 2021

Lời giải:

1. 

PT $\Leftrightarrow (x^2+5x)^2+2(x^2+5x)-24=0$

$\Leftrightarrow t^2+2t-24=0$ (đặt $x^2+5x=t$)

$\Leftrightarrow (t-4)(t+6)=0$

$\Rightarrow t-4=0$ hoặc $t+6=0$

Nếu $t-4=0\Leftrightarrow x^2+5x-4=0$

$\Leftrightarrow x=\frac{-5\pm \sqrt{41}}{2}$

Nếu $t+6=0$

$\Leftrightarrow x^2+5x+6=0$

$\Leftrightarrow (x+2)(x+3)=0\Rightarrow x=-2$ hoặc $x=-3$

2.

PT $\Leftrightarrow (x^2-4x+1)^2+2(x^2-4x+1)-3=0$

$\Leftrightarrow t^2+2t-3=0$ (đặt $x^2-4x+1=t$)

$\Leftrightarrow (t-1)(t+3)=0$

$\Rightarrow t-1=0$ hoặc $t+3=0$

Nếu $t-1=0\Leftrightarrow x^2-4x=0\Leftrightarrow x(x-4)=0$

$\Rightarrow x=0$ hoặc $x=4$

Nếu $t+3=0\Leftrightarrow x^2-4x+4=0$

$\Leftrightarrow (x-2)^2=0\Leftrightarrow x=2$

28 tháng 11 2021

a, ĐKXĐ: ...

\(\sqrt{3x^2-2x+6}+3-2x=0\)

\(\Leftrightarrow\sqrt{3x^2-2x+6}=2x-3\)

\(\Leftrightarrow3x^2-2x+6=4x^2-12x+9\)

\(\Leftrightarrow4x^2-10x+3=0\)

.....

b, ĐKXĐ: ...

\(\sqrt{x+1}+\sqrt{x-1}=4\\ \Leftrightarrow x+1+x-1+2\sqrt{\left(x+1\right)\left(x-1\right)}=16\\ \Leftrightarrow2\sqrt{x^2-1}=16-2x\\ \Leftrightarrow\sqrt{x^2-1}=8-x\\ \Leftrightarrow x^2-1=64-16x+x^2\\ \Leftrightarrow65-16x=0\\ \Leftrightarrow x=\dfrac{65}{16}\)