Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(1) \(\Leftrightarrow\left(x+1\right)\left(\sqrt{16x+17}-x+\dfrac{23}{8}\right)=0\)
cái này đâu ra z ???
nguyen van tuan: hì, xin lỗi, làm hơi tắt ^^!
\(\left(1\right)\Leftrightarrow\left(x+1\right)\sqrt{16x+17}=\left(x+1\right)\left(x-\dfrac{23}{8}\right)\Leftrightarrow\left(x+1\right)\sqrt{16x+17}-\left(x+1\right)\left(x-\dfrac{23}{8}\right)=0\Leftrightarrow\left(x+1\right)\left(\sqrt{16x+17}-x+\dfrac{23}{8}\right)=0\)
\(\Delta'=\left(m+1\right)^2-\left(2m-15\right)=m^2+16>0;\forall m\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=2m-15\end{matrix}\right.\)
Kết hợp Viet và đề bài ta được:
\(\left\{{}\begin{matrix}x_1+x_2=2m+2\\5x_1+x_2=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2m+2\\4x_1=-2m+2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{-m+1}{2}\\x_2=\frac{5m+3}{2}\end{matrix}\right.\)
Thay vào \(x_1x_2=2m-15\)
\(\Rightarrow\left(\frac{-m+1}{2}\right)\left(\frac{5m+3}{2}\right)=2m-15\)
\(\Leftrightarrow-5m^2+2m+3=8m-60\)
\(\Leftrightarrow5m^2+6m-63=0\Rightarrow\left[{}\begin{matrix}m=3\\m=-\frac{21}{5}\end{matrix}\right.\)
Bạn tham khảo ở đây nhé
https://olm.vn/hoi-dap/detail/221533389558.html
ta có : \(16x^4-8x^2+1=0\)
\(\Leftrightarrow\left(4x^2\right)^2-2\cdot4x^2\cdot1+1=0\)
\(\Leftrightarrow\left(4x^2-1\right)^2=0\)
\(\Leftrightarrow4x^2-1=0\)
\(\Leftrightarrow4x^2=1\)
\(\Leftrightarrow x^2=\dfrac{1}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
vậy....................................
Bài 1:
$2x^4-3x^2-5=0$
$\Leftrightarrow (2x^4+2x^2)-(5x^2+5)=0$
$\Leftrightarrow 2x^2(x^2+1)-5(x^2+1)=0$
$\Leftrightarrow (x^2+1)(2x^2-5)=0$
$\Leftrightarrow 2x^2-5=0$ (do $x^2+1\geq 1>0$ với mọi $x\in\mathbb{R}$)
$\Leftrightarrow x^2=\frac{5}{2}$
$\Leftrightarrow x=\pm \sqrt{\frac{5}{2}}$
Bài 2:
a. Khi $m=1$ thì pt trở thành:
$x^2-6x+5=0$
$\Leftrightarrow (x^2-x)-(5x-5)=0$
$\Leftrightarrow x(x-1)-5(x-1)=0$
$\Leftrightarrow (x-1)(x-5)=0$
$\Leftrightarrow x-1=0$ hoặc $x-5=0$
$\Leftrightarrow x=1$ hoặc $x=5$
b.
Để pt có 2 nghiệm $x_1,x_2$ thì:
$\Delta=(m+5)^2-4(-m+6)\geq 0$
$\Leftrightarrow m^2+14m+1\geq 0(*)$
Áp dụng định lý Viet:
$x_1+x_2=m+5$
$x_1x_2=-m+6$
Khi đó:
$x_1^2x_2+x_1x_2^2=18$
$\Leftrightarrow x_1x_2(x_1+x_2)=18$
$\Leftrightarrow (m+5)(-m+6)=18$
$\Leftrightarrow -m^2+m+12=0$
$\Leftrightarrow m^2-m-12=0$
$\Leftrightarrow (m+3)(m-4)=0$
$\Leftrightarrow m=-3$ hoặc $m=4$
Thử lại vào $(*)$ thấy $m=4$ thỏa mãn.
Sai đề rồi bạn ơi!!!