K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2023

\(\sqrt{\left(x^2-7\right)^2}=10\\ \Leftrightarrow\left|x^2-7\right|=10\left(1\right)\)

Nếu \(x^2\ge7\Leftrightarrow x\ge\sqrt{7}\) thì:

(1) \(\Leftrightarrow x^2-7=10\)

\(\Leftrightarrow x^2=10+7=17\\ \Leftrightarrow x=\left[{}\begin{matrix}\sqrt{17}\left(nhận\right)\\-\sqrt{17}\left(loại\right)\end{matrix}\right.\)

Nếu \(x^2< 7\Leftrightarrow x< \sqrt{7}\) thì:

(1) \(\Leftrightarrow7-x^2=10\)

\(\Leftrightarrow x^2=7-10=-3\left(loại\right)\)

Vậy PT có nghiệm \(x=\sqrt{17}\)

\(\sqrt{\left(x^2-7\right)^2}=10\)

=>|x^2-7|=10

=>x^2-7=10 hoặc x^2-7=-10

=>x^2=17(nhận) hoặc x^2=-3(loại)

=>x^2=17

=>\(x=\pm\sqrt{17}\)

16 tháng 9 2020

Nhận xét : \(\sqrt{\left(5-2\sqrt{6}\right)^x}.\sqrt{\left(5+2\sqrt{6}\right)^x}=1\)

Ta đặt \(\sqrt{\left(5-2\sqrt{6}\right)^x}=a\Rightarrow\sqrt{\left(5+2\sqrt{6}\right)^x}=\frac{1}{a}\)

Khi đó phương trình ban đầu trở thành :

\(a+\frac{1}{a}=10\Rightarrow a^2-10a+1=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=5+2\sqrt{6}\\a=5-2\sqrt{6}\end{cases}}\)

+) Với \(a=5+2\sqrt{6}\Rightarrow\sqrt{\left(5-2\sqrt{6}\right)^x}=5+2\sqrt{6}\)

\(\Leftrightarrow\left(5-2\sqrt{6}\right)^x=\left(5+2\sqrt{6}\right)^2=\left(\frac{1}{5-2\sqrt{6}}\right)^2\)

\(\Leftrightarrow x=-2\)

+) Với \(a=5-2\sqrt{6}\Rightarrow\sqrt{\left(5-2\sqrt{6}\right)^x}=5-2\sqrt{6}\)

\(\Leftrightarrow\left(5-2\sqrt{6}\right)^x=\left(5-2\sqrt{6}\right)^2\)

\(\Leftrightarrow x=2\)

Vậy \(x\in\left\{-2,2\right\}\) thỏa mãn đề.

15 tháng 2 2018

\(\left(5-2\sqrt{6}\right)^{\frac{x}{2}}+\left(5+2\sqrt{6}\right)^{\frac{x}{2}}=10\)

\(pt\Leftrightarrow\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^{2x}}+\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^{2x}}=10\)

\(\Leftrightarrow\left(\sqrt{3}-\sqrt{2}\right)^x+\left(\sqrt{3}+\sqrt{2}\right)^x=10\)

\(\Leftrightarrow\frac{1}{\left(\sqrt{3}+\sqrt{2}\right)^x}+\left(\sqrt{3}+\sqrt{2}\right)^x=10\)

\(\Leftrightarrow\frac{1}{t}+t=10\left(t=\left(\sqrt{3}+\sqrt{2}\right)^x\right)\)

\(\Leftrightarrow t^2-10t+1=0\)\(\Leftrightarrow t=5\pm2\sqrt{6}\)

\(\Rightarrow5\pm2\sqrt{6}=\left(\sqrt{3}+\sqrt{2}\right)^x\)

\(\Leftrightarrow\left(\sqrt{3}+\sqrt{2}\right)^{\pm2}=\left(\sqrt{3}+\sqrt{2}\right)^x\)

\(\Rightarrow x=\pm2\). Vậy...

9 tháng 6 2021

\(\left(\sqrt{x+4}-2\right)\left(\sqrt{4-x}+2\right)=-2x\left(-4\le x\le4\right)\) 

Dễ thấy x=0 là nghiệm của phương trình (1)

Xét x\(\ne\)0.Nhân cả 2 vế của (1) với \(\left(\sqrt{4+x}+2\right)\) được

\(x\left(\sqrt{4-x}+2\right)=-2x\left(\sqrt{4+x}+2\right)\)

\(\Rightarrow\sqrt{4-x}+2=-2\left(\sqrt{4+x}+2\right)\)

\(\Rightarrow\sqrt{4-x}=-2\sqrt{4+x}-6\)

\(\Rightarrow\sqrt{4-x}< 0\)(vô nghiệm)

Vậy nghiệm của phương trình (1) là x=0

-Chúc bạn học tốt-

9 tháng 6 2021

Bài giải:

Điều kiện:\(\left\{{}\begin{matrix}x+4\ge0\\4-x\ge0\end{matrix}\right.\)\(\left\{{}\begin{matrix}x\ge-4\\x\le4\end{matrix}\right.\)\(-4\le x\le4\)

Pt: \(\left(\sqrt{x+4}-2\right)\left(\sqrt{4-x}+2\right)=-2x\)

\(\dfrac{x+4-4}{\sqrt{x+4}+2}\left(\sqrt{4-x}+2\right)=-2x\)

\(\dfrac{x\left(\sqrt{4-x}+2\right)}{\sqrt{x+4}+2}+2x=0\)

\(x\left(\dfrac{\sqrt{4-x}+2}{\sqrt{x+4}+2}+2\right)=0\)

\(x=0\left(tm\right)\)

Vì \(\sqrt{4-x}+2>0\) và \(\sqrt{x+4}+2>0\) với mọi x

Nên \(\dfrac{\sqrt{4-x}+2}{\sqrt{x+4}+2}>0\) ⇒ \(\dfrac{\sqrt{4-x}+2}{\sqrt{x+4}+2}+2>0\)

Vậy pt có nghiệm duy nhất là \(x=0\)

21 tháng 2 2020

Đặt \(a=\sqrt{x^2+7}\) ta có :

a2 + 4x = ( x + 4 ) a

⇔ a2 - 4a - ax + 4x = 0

⇔ ( a - 4 ) ( a - x ) = 0

\(\Leftrightarrow\left[{}\begin{matrix}a=4\\a=x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2+7=16\\x^2+7=x^2\end{matrix}\right.\Leftrightarrow x^2=9\Leftrightarrow x=3\)

21 tháng 2 2020

- ĐKXĐ : \(x^2+7\ge0\) ( Luôn đúng \(\forall x\) )

Ta có : \(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)

- Đặt \(a=\sqrt{x^2+7}\) ta được phương trình :\(a^2+4x=a\left(x+4\right)\)

( ĐKXĐ : \(a\ge0\) )

=> \(a^2+4x-ax-4a=0\)

=> \(a\left(a-x\right)-4\left(a-x\right)=0\)

=> \(\left(a-4\right)\left(a-x\right)=0\)

=> \(\left[{}\begin{matrix}a-4=0\\a-x=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}a=4\\a=x\end{matrix}\right.\) ( TM )

- Thay \(a=\sqrt{x^2+7}\) vào phương trình trên ta được :

\(\left[{}\begin{matrix}\sqrt{x^2+7}=4\\\sqrt{x^2+7}=x\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x^2+7=16\\x^2+7=x^2\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x^2=9\\0=7\left(VL\right)\end{matrix}\right.\)

=> \(x=\pm3\) ( TM )

Vậy phương trình có nghiệm là \(x=\pm3\) .

21 tháng 12 2019

Bài 1:

ĐKXĐ: \(x\ge2\)

PT \(\Leftrightarrow x^2-6x+9+3\left(x-3\right)+\left(\sqrt{2x+3}-3\right)+\left(\sqrt{x-2}-1\right)=0\)

\(\Leftrightarrow\left(x-3\right)^2+3\left(x-3\right)+\frac{2\left(x-3\right)}{\sqrt{2x+3}+3}+\frac{x-3}{\sqrt{x-2}+1}=0\)

\(\Leftrightarrow\left(x-3\right)\left[x+\frac{2}{\sqrt{2x+3}+3}+\frac{1}{\sqrt{x-2}+1}\right]=0\)

Cái ngoặc to hiển nhiên > 0 với mọi \(x\ge2\) nên vô nghiệm.

Vậy x = 3

Bài 2:

HPT \(\Leftrightarrow\hept{\begin{cases}x^2+xy+y^2=19\left(x-y\right)^2\\\frac{19}{7}x^2-\frac{19}{7}xy+\frac{19}{7}y^2=19\left(x-y\right)^2\end{cases}}\)

Lấy pt dưới trừ pt trên:

\(\frac{12}{7}x^2-\frac{26}{7}xy+\frac{12}{7}y^2=0\Leftrightarrow\frac{2}{7}\left(2x-3y\right)\left(3x-2y\right)=0\)

Làm nốt ạ!

21 tháng 12 2019

bạn ơi cho mk hỏi dòng thứ 3 từ trên xuống của bài 1 là sao vậy ????

9 tháng 9 2017

đk tự giải nhé 

với x tjỏa mãn đk ta có 

\(\sqrt{\frac{x^2+3}{x}}=\frac{x^2+7}{2\left(x+1\right)}\Leftrightarrow\sqrt{x^3+3}=\frac{x^3+7x}{2\left(x+1\right)}\)

\(\Leftrightarrow\sqrt{x^3+3x}=\frac{x^3+3x+4x}{2\left(x+1\right)}\)

đặt \(\sqrt{x^3+3x}=a\)

ta có pt<=> \(a=\frac{a^2+4x}{2\left(x+1\right)}\Leftrightarrow2a\left(x+1\right)=a^2+4x\)

\(\Leftrightarrow2ax+2a=a^2+4x\Leftrightarrow a^2+4ax-2a-2ax=0\)

\(\Leftrightarrow\left(a^2-2ax\right)-\left(2a-4x\right)=0\Leftrightarrow a\left(a-2x\right)-2\left(a-2x\right)=0\)

\(\Leftrightarrow\left(a-2\right)\left(a-2x\right)=0\)

đến đây tự làm nhé

22 tháng 6 2017

\(\left(\sqrt{28}-\sqrt{12}-\sqrt{7}\right)\sqrt{7}+2\sqrt{2}\)

\(=\left(2\sqrt{7}-\sqrt{12}-\sqrt{7}\right)\sqrt{7}+2\sqrt{2}\)

\(=2\sqrt{7}.\sqrt{7}-\sqrt{12}.\sqrt{7}-\sqrt{7}.\sqrt{7}+2\sqrt{2}\)

\(=14-\sqrt{84}-7+2\sqrt{2}\)

\(=7-\sqrt{84}+2\sqrt{2}\)

Chúc bạn học tốt!!!

22 tháng 6 2017

kết quả mấy bài căn này ngoojngooj quá

=>|x^2+2|=x^2+2x+5

=>x^2+2=x^2+2x+5(Do x^2+2>=2>0 với mọi x)

=>2x+5=2

=>2x=-3

=>x=-3/2

3 tháng 9 2023

\(\sqrt{\left(x^2+2\right)^2}=x^2+2x+5\)

\(\Leftrightarrow\left|x^2+2\right|=x^2+2x+5\)  

Mà: \(x^2+2\ge2>0\forall x\)

\(\Leftrightarrow x^2+2=x^2+2x+5\)

\(\Leftrightarrow x^2-x^2+2x+5-2=0\)

\(\Leftrightarrow2x+3=0\)

\(\Leftrightarrow2x=-3\)

\(\Leftrightarrow x=-\dfrac{3}{2}\)