K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2020

Nếu đề là \(x^3+y^3+z^3-3xyz=11\) thì ta giải như sau:

Hằng đẳng thức:

\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

Áp dụng:

\(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=11\)

Dễ thấy:\(x+y+z\ge3\Rightarrow x+y+z=11\) và \(x^2+y^2+z^2-xy-yz-zx=1\)

Đến đây dễ rồi nha

Còn nếu đúng đề thì ta giải đơn giản như sau:

Dễ nhận ra trong 3 số x,y,z thì có ít nhất 1 số lớn hơn 1. Như vậy thì:

\(11=x^3+y^3+z^3+3xyz\ge x^3+y^3+z^3+6\Rightarrow x^3+y^3+z^3\le5\Rightarrow x^3< 5\Rightarrow x=1\)

Bạn tự làm tiếp nha

20 tháng 1 2021

Áp dụng bđt AM - GM:

\(x^3+1+1\ge3x;y^3+1+1\ge3y;z^3+1+1\ge3z;2x+2y+2z\ge6\sqrt[3]{xyz}=6\).

Cộng vế với vế các bđt trên rồi rút gọn ta có đpcm.

20 tháng 1 2021

Áp dụng BĐT Cosi:

\(\left(x^3+1+1\right)+\left(y^3+1+1\right)+\left(z^3+1+1\right)\)

\(\ge3\left(x+y+z\right)\)

\(\ge x+y+z+2.3\sqrt[3]{xyz}\)

\(=x+y+z+6\)

\(\Rightarrow x^3+y^3+z^3\ge x+y+z\)

Đẳng thức xảy ra khi \(x=y=z=1\)

24 tháng 7 2017

Đáp án: A

17 tháng 3 2017

Đáp án: B

17 tháng 1 2017

Đáp án: B

Vậy hệ phương trình có 2 nghiệm.

21 tháng 2 2018

Khi x = y thì  x 6 + x 6 = 27 ⇔ x 6 = 27 2 ⇔ x = ± 27 2 6

Do đó hệ có nghiệm  ± 27 2 6 ; ± 27 2 6

⇔ 3 x y 3 + 27 x y = 0 ⇔ x y = 0 x y 2 = − 9 v ô   l ý

Vậy hệ phương trình đã cho có 2 nghiệm.

Đáp án cần chọn là: B

5 tháng 1 2021

1.

Đặt \(x^2-2x+m=t\), phương trình trở thành \(t^2-2t+m=x\)

Ta có hệ \(\left\{{}\begin{matrix}x^2-2x+m=t\\t^2-2t+m=x\end{matrix}\right.\)

\(\Rightarrow\left(x-t\right)\left(x+t-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=t\\x=1-t\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=x^2-2x+m\\x=1-x^2+2x-m\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-x^2+3x\\m=-x^2+x+1\end{matrix}\right.\)

Phương trình hoành độ giao điểm của \(y=-x^2+x+1\) và \(y=-x^2+3x\):

\(-x^2+x+1=-x^2+3x\)

\(\Leftrightarrow x=\dfrac{1}{2}\Rightarrow y=\dfrac{5}{4}\)

Đồ thị hàm số \(y=-x^2+3x\) và \(y=-x^2+x+1\)

Dựa vào đồ thị, yêu cầu bài toán thỏa mãn khi \(m< \dfrac{5}{4}\)

Mà \(m\in\left[-10;10\right]\Rightarrow m\in[-10;\dfrac{5}{4})\)

Có cách nào lm bài này bằng cách lập bảng biến thiên k ạ 

NV
20 tháng 3 2022

- Với \(x< 0\Rightarrow2^x\notin Z\Rightarrow2^x+7\notin Z\) pt vô nghiệm

- Với \(x=0\) ko thỏa mãn

- Với \(x=1\Rightarrow y=\pm3\)

- Với \(x>1\Rightarrow2^x+7\) luôn lẻ \(\Rightarrow y^2\) lẻ \(\Rightarrow y\) lẻ \(\Rightarrow y=2k+1\)

\(\Rightarrow2^x+7=\left(2k+1\right)^2\)

\(\Rightarrow2^x+6=4k\left(k+1\right)\)

\(\Rightarrow4k\left(k+1\right)-2^x=6\)

Do \(x>1\Rightarrow2^x⋮4\Rightarrow4k\left(k+1\right)-2^x⋮4\) trong khi \(6⋮̸4\)

\(\Rightarrow\) Ko tồn tại x;k thỏa mãn

Vậy \(\left(x;y\right)=\left(1;-3\right);\left(1;3\right)\)